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Abstract

Accurate segmentation of cell nuclei in microscope images of tissue sections is a key step in a 

number of biological and clinical applications. Often such applications require analysis of large 

image datasets for which manual segmentation becomes subjective and time consuming. Hence 

automation of the segmentation steps using fast, robust and accurate image analysis and pattern 

classification techniques is necessary for high throughput processing of such datasets. We describe 

a supervised learning framework, based on artificial neural networks (ANNs), to identify well-

segmented nuclei in tissue sections from a multistage watershed segmentation algorithm. The 

successful automation was demonstrated by screening over 1400 well segmented nuclei from 9 

datasets of human breast tissue section images and comparing the results to a previously used 

stacked classifier based analysis framework.

I. INTRODUCTION

Many high throughput biological and clinical applications require selection of objects of 

interest in large microscope image datasets that have been segmented with a high degree of 

accuracy and confidence. Manual segmentation of such large datasets is both subjective and 
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time consuming, making it essential to automate the processing. One such application is 

spatial analysis of gene localization in interphase nuclei using fluorescence in situ 

hybridization (FISH) technique [1], [2]. In these studies, it has been shown that localization 

of certain genes in interphase nuclei has implications for their function. Moreover, gene 

localization of certain genes is different in normal and cancerous tissues, suggesting a 

diagnostic value for gene localization. In this application, accurate segmentation of cell 

nuclei is a prerequisite for drawing significant biological and diagnostic conclusions. The 

task of segmenting nuclei for this application is uniquely different to other tasks. On the one 

hand, many more nuclei are imaged than are needed for such analysis, enabling us to 

emphasize highly accurate segmentation of a subset of nuclei rather than attempting to 

segment as many nuclei as possible. On the other hand, there is considerable variation in 

size, morphological and textural features of the nuclei because of the inherent variations 

between tissue samples and truncation of the nuclei by the physical sectioning of the tissue. 

High texture in the nuclear regions makes it difficult to distinguish between the boundary 

and internal intensity variations. Variation in morphological cues used by image analysis and 

pattern recognition algorithms [3] to segment nuclei complicates identification of well 

segmented nuclei. A fast, robust and accurate automatic processing pipeline was presented at 

this conference in the year 2009 [4] which identifies a subset of the objects of interest (cell 

nuclei) from the microscope images with a high degree of confidence. Here, we present a 

series of advancements to this pipeline in terms of improved segmentation, measuring more 

features of segmented objects and replacing the stacked classifier with an artificial neural 

network (ANN).

Nuclei segmentation [5], [6], [7], [8] in tissue images is the first step in the workflow. The 

segmentation part of the pipeline incorporates multiscale edge enhancement and multistage 

watershed algorithms. However due to the aforementioned difficulties, 100% segmentation 

accuracy is not achievable. Consequently an ANN was trained on a subset of the data (25%) 

and then used automatically to identify with a certain degree of confidence a subset of the 

segmented objects.

Although the basic building blocks of the pipeline were used out of the box, the novelty of 

the method lies in the fact that the basic blocks have been put together in an unique and 

innovative way to solve an extremely challenging segmentation and screening task.

II. IMAGE DATA, NUCLEI SEGMENTATION AND CLASSIFICATION 

PIPELINE

Sample preparation and image acquisition are as described in reference [4]. We reduced 178 

3D images from 9 datasets (D1 - D9) consisting of normal and cancerous breast tissue 

sections to 2D images using maximum intensity projection. Fig. 1 shows the block diagram 

of the segmentation and classification framework. The preprocessing step enhanced the 

contrast of the nuclei boundaries and the enhanced images were the input to the 

segmentation algorithm (Fig. 2). Output of the segmentation algorithm was classified using a 

supervised pattern recognition engine to identify well segmented nuclei having reasonable 

boundary accuracy.
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A. Wavelet Preprocessing

The preprocessing step used wavelet based enhancement of the object boundaries using 

LastWave toolbox [9]. It involved storing the edges in the image using a chain coded 

extrema representation followed by selectively enhancing edges in different spatial scales 

using an user-defined factor. Though this step accentuated the inside texture of the nuclei 

(compare Figs. 3(a) & 3(b)), the advantage offered by the boundary enhancement 

overshadowed this shortcoming.

B. Multistage Watershed Segmentation

Fig. 2 shows the mutistage watershed based segmentation algorithm which replaced 

previously used hybrid levelset-watershed algorithm [4] for nuclei segmentation. Wavelet 

preprocessed images were first filtered using an edge pre-serving adaptive Gaussian filter to 

reduce noise and texture variations. Next, entropy based filtering followed by isodata 

thresholding was used to identify the foreground region. Morphological operations and size 

based screening was used to remove small objects resulting from noisy background and 

texture within the nuclei (Fig. 3(c)). To overcome the problems of intensity variation and 

multiple maxima identification, due to texture, multiple runs of an intensity based seeded 

watershed algorithm [10] were used to obtain an initial segmentation of the nuclei (Fig. 

3(d)). Seeds to initiate the watershed segmentation were identified using an extended-

maxima transform [11]. Predominant watershed lines were retained as prominent edges (Fig. 

3(d)). To remove the background fragments, we performed k-means intensity based 

clustering of the watershed fragments and rejected fragments in the lowest intensity cluster 

(Fig. 3(e)).

To merge the fragments from the watershed we took advantage of the expected 

morphological structure of nuclei by using a gray weighted distance transform (GWDT) 

(Fig. 3(f)). The GWDT helped identify and seed high intensity nuclei regions, while taking 

advantage of the structure of the foreground area. Multiple runs of the seeded watershed 

were used to segment the distance image (Fig. 3(g)). Intensity based watershed fragments 

were assigned the label of the GWDT based watershed fragment with which they had 

maximum overlap (Fig. 3(h)). To capture the nuclei embedded in bigger clusters (and missed 

by the previous steps), such clusters were identified using a two-dimensional feature (size 

more than 10,000 pixels and perimeter-to-area ratio (P2A) more than 1.4) classification 

system and then watershed was performed on each identified cluster. Due to the nuclei size 

variations from one dataset to the other, the watershed algorithms failed to identify 

potentially good nuclei by oversegmenting them. Hence, in the final step of the method, a 

tree based hierarchical merging strategy [12] was coupled with elliptical nuclear shape 

modeling to merge oversegmented nuclei. Fig. 3(i) shows the final output.

C. Pattern Classification Using ANN

The pattern analysis module is shown in Fig. 4. A 64 dimensional feature set was measured 

by augmenting the 24 dimensional feature set reported previously [4] with 40 new features 

to capture most of the pertinent morphological and textural properties of nuclei. The feature 

set was first normalized and then reduced prior to classification with an ANN which was 

used in place of an earlier stacked classifier [4] in order to improve the classification 
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performance. Feature normalization plays a vital role in ANNs and is essential for numerical 

stability, hence, we tested 6 normalization techniques [13], namely, linear scaling to unit 

range, Z-Score, linear scaling to unit variance, transformation to uniform distribution, rank 

normalization and no normalization, to identify the best. Next, dependency ranking [14] was 

used to identify the most relevant features from the 64 dimensional feature set. It was 

calculated using,

D i = p xi, y log
p xi, y

p xi p y
dxidy, 1

where D(i) is the dependency ranking score, xi is the ith element of the feature set and y is 

the set of output labels. Probability densities p(.) and joint probability densities p(. , .) were 

calculated using histogram count. This was followed by a principal component analysis 

(PCA) based redundancy removal.

The ANN architecture had a single tansigmoidal hidden layer and a linear output layer. The 

classification problem was posed as a 2 class problem with output classes: ‘Well Segmented 

Nuclei’ and ‘Remaining Objects’ (i.e. poorly segmented nuclei). The ANN training set 

composed of feature vectors extracted from manually classified nuclei in 45 training images 

from the 9 datasets (D1–D9). 3 training methods were tested namely Levenberg-Marquardt 

Back-propagation Training, Conjugate gradient backpropagation with Powell-Beale restarts 

and Resilient backpropagation [15], all showing very similar results in terms of time and 

performance. The ANN based classification scheme was used after the training phase (on 

25% of data). The actual classification of the test set into good segmentation and inaccurate 

segmentation was entirely automatic.

III. EXPERIMENTS AND RESULTS

The 9 datasets had in all 178 images and 1496 nuclei were manually identified as ‘Well 

Segmented’. The 45 images used as the training set had a ‘Well Segmented’ manual nuclei 

count of 386. Though the segmentation algorithm segmented a reasonably high proportion 

of the imaged nuclei (compare Fig. 3(a) and 3(i)), the goal of the study was not to identify as 

many nuclei as possible, rather it was to automatically identify the subset of nuclei that were 

precisely segmented with high confidence.

Experiments to identify the best possible configuration for ‘Well Segmented’ nuclei 

classification involved testing 1620 configurations of the pattern analysis module by varying 

the hidden layer neuron count, the normalization method, number of PCA dimensions and 

the number of features selected using dependency ranking. Fig. 5 shows the precision-recall 

plot for the configurations color coded with the hidden layer neuron count. The precision 

recall performance evaluation was performed on 133 images that did not belong to the 45 

image training set. The best possible single configuration was identified as the one closest to 

the point (1 , 1) in the precision-recall plot having precision = 71.5% and recall = 73.6%. 

Fig. 6(a) shows segmented nuclei manually annotated as ‘Well Segmented’ (cyan) versus 

‘Remaining Objects’ (orange) and Fig. 6(b) shows the automatically selected nuclei. Using 
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this configuration the yield on the entire dataset was 1435 nuclei. Performance of the 

analysis pipeline was compared to that of a stacked classifier based classification system [4]. 

Table I shows the comparison between the stacked classifier and various configurations of 

the ANN classifier. The performance of the ANN based system was superior to that of the 

stacked classifier.

An unique and novel advantage of the new pattern recognition engine (PRE) lies in the 

flexibility to progressively select different configurations of the PRE (indicated by the red 

arrow in Fig. 5) in order to select the objects with the highest precision first. For instance, 

one can select an initial PRE configuration with a very high precision (98.21%), but with 

low recall (5.4%) (refer Fig. 5) to select a few nuclei. Then, another configuration, albeit at a 

slightly lower precision, can be used to select a few more nuclei. This process can be 

repeated until a sufficient number of nuclei have been automatically selected. Overall the 

precision will be significantly greater than 71.5% that was achieved for the single best 

configuration. This way one can be highly selective about the quality of the nuclei while 

accumulating sufficient nuclei for further analysis.

IV. CONCLUSIONS AND FUTURE WORK

We have described an automatic and intelligent image analysis pipeline that segments a high 

proportion of nuclei in tissue images and then screens out a certain number of nuclei with an 

acceptable degree of confidence about their segmentation accuracy. Although 3-D Z-stacks 

were acquired, initial data exploration revealed that the segmentation improvements offered 

by 3D analysis of the data would get outweighed by the adverse effects of significantly 

increased computational complexity, hampering time-efficient analysis of several hundred 

nuclei which improves the accuracy of the statistical analysis. Using a multistage watershed 

segmentation algorithm with superior segmentation performance, more features to identify 

well segmented nuclei and an ANN, the proposed methodology improves the nuclear 

screening efficacy of a previously reported stacked classifier based system. The proposed 

methodology speeds up the screening procedure by many folds, thus, enabling it to be used 

as a part of high throughput analysis. The method can be used to analyze nuclear features 

such as gene positioning or morphometric analysis to answer important questions in genome 

biology.

Some of the future work includes combining the segmentation results from the multistage 

watershed algorithms described here with hybrid level set watershed algorithm used 

previously [4], analysis of feature contributions, comparison of the ANN classifier to other 

methods such support vector machines and including features of the context around each 

segmented object in the selection process and progressively reconfiguring the classifier so 

that best segmented nuclei are selected first. Inspite of the problem of increased 

computational complexity, 3D analysis of the data using computationally efficient 

algorithms is also envisioned as a potential future work.

V. ACKNOWLEGMENTS

Fluorescence imaging was performed at the Fluorescence Imaging Facility, National Cancer Institute, NIH, 
Bethesda, MD.

Nandy et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2019 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This project has been funded in whole or in part with federal funds from the National Cancer Institute, National 
Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not 
necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of 
trade names, commercial products, or organizations imply endorsement by the U.S. Government.

This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), 
NCI, Center for Cancer Research and by a Department of Defense Breast Cancer Idea Award to Tom Misteli.

REFERENCES

[1]. Meaburn KJ and Misteli T, Locus-specific and activity-independent gene repositioning during 
early tumorigenesis, The Journal of Cell Biology, Vol. 180, pp 39–50, 2008 [PubMed: 18195100] 

[2]. Meaburn KJ, Gudla PR, Khan S, Lockett SJ, and Misteli T, Disease-specific gene repositioning in 
breast cancer, The Journal of Cell Biology, Vol. 187, no. 6, pp 801–812, 2009 [PubMed: 
19995938] 

[3]. Duda RO, Hart PE and Stork DG, Pattern Classification, Second Edition, 2000, Wiley-
Interscience, New York, NY

[4]. Nandy K, Gudla PR, Meaburn KJ, Mistelli T and Lockett SJ, Automatic Nuclei Segmentation and 
Spatial FISH Analysis for Cancer Detection, proceedings of 31st Annual International IEEE 
EMBS Conference, Minneapolis, 2009, pp 6718–6721

[5]. Gudla PR, Nandy K, Collins J, Meaburn KJ, Misteli T and Lockett SJ, A High-Throughput System 
for Segmenting Nuclei Using Multiscale Techniques, Cytometry A, 2008, 73A, pp 451–466

[6]. McCullough D, Gudla P, Harris B, Collins J, Meaburn K, Nakaya M, Yamaguchi T, Misteli T, 
Lockett SJ, Segmentation of Whole Cells and Cell Nuclei From 3-D Optical Microscope Images 
Using Dynamic Programming, IEEE Transactions on Medical Imaging, 2008, 27, pp 723–734 
[PubMed: 18450544] 

[7]. Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA and Roysam B, A hybrid 3D watershed 
algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in 
confocal image stacks, Cytometry A, 2003, 56A, pp 23–36

[8]. Laurain V, Ramoser H, Nowak C, Steiner GE and Ecker R, “Fast Automatic Segmentation of 
Nuclei in Microscopy Images of Tissue Sections”, Proceedings of the 2005 IEEE Engineering in 
Medicine and Biology Conference, Shanghai, China, 2005, pp 3367–3370

[9]. LastWave, http://www.cmap.polytechnique.fr/˜bacry/LastWave

[10]. Meyer F, Topographic distance and watershed lines, Signal Processing, 38, pp. 113–125, 1994

[11]. Soille P, Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999

[12]. Lin G, Chawla MK, Olson K, Guzowski JF, Barnes CA and Roysam B, Hierarchical, Model-
Based Merging of Multiple Fragments for Improved Three-Dimensional Segmentation of Nuclei, 
Cytometry A, 63A, pp 20–33, 2005

[13]. Aksoy S and Haralick R. Feature Normalization and Likelihood-based Similarity Measures for 
Image Retrieval, Pattern Recognition Letters 2000, 22, pp 563–582.

[14]. Guyon I and Elisseeff A. An Introduction to Variable and Feature Selection, J Machine Learning 
Research, 2003, 3, pp 1157–1182.

[15]. Neural Network Toolbox, Matlab 2008a, The MathWorks, Inc, Natick MA

Nandy et al. Page 6

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2019 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cmap.polytechnique.fr/˜bacry/LastWave


Fig. 1. 
Processing pipeline
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Fig. 2. 
Multistage Watershed Segmentation
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Fig. 3. 
(a) Original DAPI channel maximum intensity projection (MIP). (b) Wavelet enhanced 

DAPI channel. (c) Entropy filtered and isodata thresh-olded image after binary operations 

and size filtering. (d) Seeded watershed output. (e) Remaining watershed fragments after 

rejecting background fragments. (f) Gray weighted distance transform output. (g) Watershed 

output on the gray weighted distance transformed image. (h) Merged output of (e) and (g). 

(i) Final segmentation output after the cluster breaking watershed and tree based merging.
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Fig. 4. 
Pattern Analysis Module
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Fig. 5. 
Precision-Recall plot of 1620 configurations color coded with ANN hidden layer neuron 

count
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Fig. 6. 
(a) Hand annotated nuclei (Cyan - Well Segmented Nuclei, Orange Remaining objects) (b) 

ANN selected nuclei
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TABLE I:

TABLE SHOWING PERFORMANCE COMPARISON OF STACKED CLASSIFIER AND ANN 

CLASSIFIER SYSTEMS

Performance Stacked Classifier ANN Classifier (6 Configurations)

Recall 63.89% 5.4% 20.9% 24.63% 53.09% 59.76% 73.6%

Precision 67.11% 98.2% 94.3% 85.96% 79.21% 77.68% 71.5%
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