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Abstract

We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery 

brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was 

used as an approach for brain state estimation in motor imagery task performance, using scalp 

electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand 

movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. 

Offline data analysis was conducted for training the model as well as for decoding the imagery 

movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy 

of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing 

research includes online BCI applications of this approach as well as combined state and 

parameter estimation using this algorithm with different system dynamic models.

I. INTRODUCTION

In a brain computer interface (BCI) development, neuronal signals are translated into 

commands to build a direct interface between the brain and a device. Although invasive 

techniques have shown promise in the application of BCI, non-invasive scalp EEG based 

methods can be more easily applied. Feature extraction and pattern discrimination are 

commonly applied in the design of motor imagery based BCI paradigms, where subjects 

perform imagery tasks in response to audio-visual cues on the computer screen. Recently, 

there have been some model-based BCI applications where a generative model that 

correlates brain activity with intended tasks is developed. Martens and Leiva [1] developed 

such a model for decoding the visual event-related potential-based brain-computer speller. 

Geronimo et al [2] presented a simplified generative model for motor imagery BCI 

application and showed significantly higher BCI accuracy performance.

The Kalman filter (KF) has been applied in an encoding-decoding framework in a number of 

neural interface applications using intracranial signals. Wu et al [3–5] used the KF for neural 
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decoding of motor cortical activity and cursor motion. In motor imagery BCI applications, 

the KF has been applied mainly for optimizing model parameter estimation.

We here applied a KF as a model-based approach for brain state estimation in motor imagery 

task performance, using non-invasive scalp electroencephalography (EEG) signals. This 

approach enables encoding imagery hand, tongue, and bilateral toe movements in motor 

cortex and decoding that movement from recorded EEG signals. A model-based approach in 

BCI has the benefit of understanding the brain dynamics for further applications in BCI. The 

application of a Kalman Filter is expected to handle noisy brain signals effectively.

II. Methods

A. Experimental Paradigm

Five healthy human subjects, 25–32 years old, four males and one female, none of them 

under any kind of medication, participated in the motor imagery tasks. The experiments 

were conducted under Institutional Review Board approval at Penn State University. Each 

subject conducted one session of tasks that consisted of four runs, each with 40 trials. Each 

trial was designed as follows: the subject would be quiet and relaxed, a cross would appear 

on the computer screen, a left, right, up, or down arrow, depending on the task to be 

performed, would appear during which time the subject would imagine the task, and then 

both the cross and arrow would disappear to end the trial. Of the four total runs, the first two 

were designed for imagery of left or right hand movements and the last two runs were for 

imagery of tongue or bilateral toe movements. Of the 40 trials in each left-right hand 

movement run, 20 randomly permuted trials showed “left” arrows indicative of imagined left 

hand movements and the other 20 showed “right” arrows indicative of imagined right hand 

movements. Similarly, “up” and “down” arrows were used for tongue-toes tasks.

B. Data Acquisition and Processing

Nineteen monopolar electrode positions (FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, 

P7, P3, Pz, P4, P8, O1, and O2 as per the International 10–20 standard electrode locations) 

referenced to linked earlobe electrodes were selected for acquiring EEG under open loop 

conditions while the participants performed the imagery tasks. Data were passed through a 

fourth order band-pass Butterworth filter of 0.5–60 Hz and sampled at 256 Hz. Data were 

recorded with g.tec amplifier systems [6]. The same experimental paradigm with the same 

montage was used in our previous work [7].

Data were epoched from 2 s before to 4 s after the presentation of each arrow cue. 

Recordings were visually inspected for artifacts, and by using an amplitude threshold (55 

μV) criterion, trials that contained artifacts were excluded from further analysis. For each 

subject, the number of per class trials remaining after artifact exclusion was 70–80 out of 

signals recorded in 80 trials.

The Laplacian derivations [8–11] were developed for nine inner loop channels (F3, Fz, F4, 

C3, Cz, C4, P3, Pz, P4) using four channels surrounding the active channel for deriving the 

weighted average. The Laplacian is a discrete second derivative, calculated as the difference 
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between an electrode potential and a weighted average of the surrounding electrode 

potentials and is commonly applied to increase the spatial resolution of EEG signals.

C. Dynamic Modeling and Kalman Filter Application

The KF is “essentially a set of mathematical equations that implement a predictor-corrector 

type estimator that is optimal in the sense that it minimizes the estimated error covariance—

when some presumed conditions are met” [12]. Although the linear KF, in its original format 

introduced by Kalman [13], works for many applications, a number of nonlinear filters have 

been developed for non-linear processes. A KF can be applied in order to estimate states or 

model parameters as well as to estimate both.

We begin with a dynamic state space model (DSSM) with unobserved states xk that evolve 

over time (discrete time steps designated by k) and observed outputs yk that are 

conditionally independent given the states, as:

(1)

where vk and nk are process and measurement noises respectively, and uk are external inputs. 

The state transition function f and the observation function g are parameterized by w, in an 

augmented format.

We here used a multi layer perceptron (MLP) artificial neural network (ANN) model 

corresponding to each of the 9 Laplacian electrodes for motor imagery task performance, as 

our system dynamic model. An ANN is a computational model based on biological neural 

networks and consists of an interconnected group of artificial neurons [7–10]. It can be 

treated as non-linear statistical data modeling tools that can be used to model complex 

relationships between inputs and outputs or to find patterns in data. Within a layer of an 

ANN, a single neuron makes an operation of a weighted sum of the incoming signals and a 

bias term, fed through an activation function and resulting in the output value of that neuron 

(Fig. 2). A popular activation term in dynamic modeling is a non-linear hyperbolic tangent 

(tanh) function. There are mainly two learning processes of an ANN, namely supervised 

learning and unsupervised learning. In supervised learning, for a given set of input-output 

pairs, the aim is to find a function that maps the inputs to the outputs by minimizing a cost 

function that is related to the mismatch between the mapped outputs and the target outputs. 

A commonly used objective is to minimize the average squared error between the network’s 

outputs and the target values. When one tries to minimize this mean-squared error cost 

function, one obtains the well-known backpropagation algorithm for training neural 

networks. Typically, the objective is to make outputs oi and targets ti identical for i = 1, …, p 
for p variables, by using a learning algorithm. More precisely, the objective is to minimize 

the error function of the network, defined as

(7)
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Fig. 2 shows an example of an ANN model and the backpropagation framework. We used a 

6-4-1 structure for the model, a hyperbolic tangent (tanh) activation function in the hidden 

layer, and a liner activation function for the output layer. The preliminary model structure 

and function were chosen here in an ad-hoc basis with a goal to introduce different model 

structures and compare them in the ongoing study. The ANN parameters can be estimated by 

model fitting using backpropagation to the EEG data corresponding to each electrode for the 

motor imagery task performance. The single channels were used as an initial modeling 

approach with the goal to apply a multi-variable KF design in the ongoing study.

The recursive form of the optimal Kalman update of the conditional mean of the state 

random variable, x̂k = E[xk|y1:k] and its covariance, Pxk is written as:

(2)

(3)

The optimal terms here are:

(4)

(5)

(6)

The Sigma-point Kalman filters (SPKF) are a group of Kalman filter algorithms that fall into 

a general deterministic sampling framework known as the sigma-point approach for the 

calculation of the posterior mean and covariance of the pertinent Gaussian approximate 

densities in the Kalman framework recursion [14, 15]. The SPKF was introduced as a better 

alternative to the extended Kalman filter (EKF) for Gaussian approximate probabilistic 

inference in general nonlinear DSSMs. The underlying unifying sigma-point approach that 

is common to all SPKFs, was introduced as a method to calculate the statistics of a random 

variable that undergoes a nonlinear transformation. These calculations form the core of the 

optimal Kalman time and measurement update equations, which are simply the original 

(optimal) recursive Bayesian estimation integral equations recast under a Gaussian 

assumption.
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The unscented KF (UKF) [16–18] and the central difference KF (CDKF) [14, 15], although 

derived from different starting assumptions, both employ the sigma-point approach as their 

core algorithmic components for calculating the posterior Gaussian statistics necessary for 

Gaussian approximate inference in a Kalman framework.

In practice, there are many situations where linearizing the underlying model equations, or 

linearizing the control law, as is done in an extended Kalman Filter (EKF) application, is not 

suitable. The central difference filter (CDF) of Ito and Xiong [19] and the divided difference 

filter (DDF) of Nørgaard [20] are based on polynomial approximations of the nonlinear 

transformations obtained with a multidimensional extension of Stirling's polynomial 
interpolation formula [21, 22]. The CDKF (either CDF or DDF) is a derivativeless Kalman 

filter for nonlinear estimation, based on polynomial interpolation and approximation of the 

derivatives using difference equations (central or divided, as are termed). A particularly 

useful idea of the CDKF is to directly update the Cholesky factors of the covariance 

matrices, which are used in the a-priori and aposteriori updates of the outputs and states. 

Nørgaard et al. [20] showed how the CDKF has a slightly smaller absolute error (compared 

to the UKF) in the fourth order term and also guarantees positive semi-definiteness of the 

posterior covariance. The CDKF and UKF perform equally well with negligible difference 

in estimation accuracy and have been found to be superior to the EKF.

The square-root form of CDKF increases the numerical robustness of the filter, as well as 

reduces the computational cost for certain DSSMs. This form propagates and updates the 

square-root of the state covariance directly in Cholesky factored form, using the sigma-point 
approach and linear algebra techniques such as QR decomposition, Cholesky factor updating 
and pivot-based least squares [14]. The choice of a SR-UKF or SR-CDKF to be used is a 

matter of implementational choice. However, there is one advantage CDKF has over the 

UKF: CDKF uses only a single scalar scaling parameter, the central difference interval size 

h, as opposed to three parameters in UKF [14]. This h parameter determines the spread of 

the sigma-points around the prior mean. For Gaussian random variables, the optimal value of 

h is .

We here applied the square root CDKF (SR-CDKF) algorithm which lies in the family of 

ensemble KF or sigma point KF developed by Van der Merwe [14, 23], for the state 

estimation of brain dynamics corresponding to motor imagery. The essential steps and the 

detailed derivations of SR-CDKF algorithm can be found in the literature.

We used a state dimension of order six, Gaussian noise with 5dB of signal to noise ratio 

(SNR), zero initial state value, and initial noise variance to be unity. We used the ReBEL 

toolkit [24] for the KF application.

D. Motor Imagery Task Performance

For the evaluation of the decoding performance of the KF approach, we applied each left, 

right, tongue, or toes state model to evaluate motor imagery task performance using offline 

EEG signals. We calculated the distance of the signals from the models corresponding to 

each of the tasks. We assigned the signals to the model having the shortest distance as the 
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intended task. First order norm of the residual (error between the model and the EEG signal) 

was considered as the measure of the distance.

III. Results and Discussion

Fig. 3 presents the proposed SR-CDKF results for decoding motor imagery task 

performance for Subjects 1–5. The results, with the limited number of subjects under this 

study, show a decoding accuracy of 78%–90% for the hand movements and 70%–90% for 

the tongue-toes movements, which are very promising to be applied for an online BCI 

application that is under study.

Classification accuracies for the four imagery tasks (left vs. right hand and tongue vs. toes 

movements) by the state estimation model for five subjects were compared with the 

accuracies using the commonly applied discriminative approach using spectral powers in mu 

(8–12 Hz) and beta (14–20 Hz) frequency bands as the features along with linear 

discriminant analysis (LDA) as a classification method [25–29]. The best (i.e. highest) 

classification accuracies (among the four time segments) by each method for all five subjects 

are shown in Fig. 4.

An analysis of variance (ANOVA) check shows that the classification accuracy using the 

Kalman model was significantly better (p-value 0.006) than the accuracy using the mu-beta 

(MB) power spectra features.

The advantage of this approach lies in that this model-based approach with dynamic state 

estimation will help understand the brain dynamics better as well as effectively handle noisy 

brain signals through the application of a Kalman Filter.

IV. Summary

A square root central difference Kalman filter (SR-CDKF), a member of non-linear sigma 

point Kalman filters (SPKF) was applied to a brain computer interface (BCI) for brain state 

estimation in motor imagery task performance, using scalp electroencephalography (EEG) 

signals. For left vs. right hand movements and tongue vs. bilateral toe movements, 

preliminary results of offline data analysis indicate the feasibility of this approach with a 

decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes 

movements, for the limited number of subjects in this study. Comparison of the imagery 

classification accuracy using the proposed approach with the accuracy using commonly 

applied mu-beta (MB) power spectra features shows that the proposed algorithm 

performance is significantly better than the discrimination approach using MB features. 

Ongoing research includes online BCI applications of this approach as well as combined 

state and parameter estimation using this algorithm with different system dynamic models.
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Fig. 1. 
(a) Fixation cross and (b) Arrow cue for motor imagery tasks.
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Fig. 2. 
(a) A simple example of an artificial neural network (ANN), (b) an example of an extended 

network to estimate the cost functions in ANN backpropagation.
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Fig. 3. 
Decoding accuracy of motor imagery tasks using the square root central difference Kalman 

Filter estimation algorithm for five subjects. Two pairs of tasks, left vs. right hand 

movements and tongue vs. bilateral toe movements are shown.
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Fig. 4. 
Classification accuracy of motor imagery tasks using the square root central difference 

Kalman Filter estimation algorithm in comparison to the accuracy using mu-beta power 

spectra features. Two pairs of tasks, left vs. right hand movements and tongue vs. bilateral 

toe movements are shown.
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