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Abstract
A long-term goal of biomedical research is to decipher how genetic processes influence disease
formation. Ubiquitous and advancing microarray technology can measure millions of DNA
structural variants (single-nucleotide polymorphisms, or SNPs) and thousands of gene transcripts
(RNA expression microarrays) in cells. Both of these information modalities can be brought to
bear on disease etiology. This paper develops a Bayesian network-based approach to integrate
SNP and expression microarray data. The network models SNP-gene interactions using a
phenotype-centric network. Inferring the network consists of two steps: variable selection and
network learning. The learned network illustrates how functionally dependent SNPs and genes
influence each other, and also serves as a predictor of the phenotype. The application of the
proposed method to a pediatric acute lymphoblastic leukemia dataset demonstrates the feasibility
of our approach and its impact on biological investigation and clinical practice.

I. Introduction
Modern microarray technologies have revolutionized biomedical investigations through the
parallel assessment of structural or functional information of hundreds of thousands of
biomolecules on a single chip. Various types of microarrays have been invented to study
genomics from different aspects. Single-nucleotide polymorphism (SNP) microarrays
interrogate DNA at a specific nucleotide, allowing genome-wide association studies to
identify SNPs associated with disease formation in a hypothesis-free manner [1]. Gene
expression chips record RNA transcripts from DNA, allowing differential expression
analysis [2–3] to identify genes active or repressed in disease processes. While the
techniques of analyzing each individual type of data have been well established, much work
remains to usefully aggregate SNP and gene expression data to explain how genetic
mutations and aberrant transcription result in disease formation.

Integrative analysis of SNP and gene expression microarrays has gained substantial attention
in the past few years. Several novel statistical methods were developed to identify genetic
variants associated with gene expression traits (called expression quantitative trait loci, or
eQTLs) [4–6]. However, the identification of eQTLs does not reveal their functional
association with disease formation, which has lead to difficulty translating eQTL findings to
clinical practice. Furthermore, eQTL analysis only accounts for SNP-gene interactions, and
is unable to explain SNP-SNP and gene-gene interactions.
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This paper proposes the following strategies to perform integrative analysis of SNP and gene
expression data:

1. To capture three types of molecular interactions (i.e., SNP-SNP, SNP-gene, and
gene-gene interactions), we conduct a network analysis of the data.

2. To relate the eQTL findings to disease states, we treat the disease phenotype as a
variable and measure association between it and the SNPs and genes.

3. To infer the influence of SNPs and genes on disease formation, we include the
phenotype variable in the network analysis and model phenotype-SNP and
phenotype-gene interactions along with the three types of molecular interactions.

4. To facilitate the clinical usefulness of our network analysis, the resultant network is
also an accurate predictor/classifier of phenotypes.

Microarray data are usually noisy and experimental samples always present biological
variability, thus we model the data by random variables. A SNP takes one of three possible
genotypic states (i.e., homozygous major, homozygous minor, or heterozygous), which are
described by a multinomial variable. A gene expression level is a continuous measurement
of the abundance of the gene transcript in the cell, which is described by a log-normal
variable. From the many approaches to biological network analysis [7], we choose a
Bayesian network (BN) framework, due to the ease of handling random variables and
making predictions based on the inferred networks. However, most existing BN methods for
microarray analysis consider a single type of variable only [8–10]. When encountering
mixed types of data, these BN methods quantize expression levels to simplify the analysis,
but unfortunately lose much information during quantization. To avoid problems arising
from quantization, this paper describes the application of a new BN method to process both
discrete and continuous variables, resulting in an able tool for SNP-expression analysis. We
then demonstrate how our approach can study transcription mechanisms in pediatric acute
lymphoblastic leukemia (ALL).

II. Method Development
A. Phenotype-Centric Network

A Bayesian network is a directed graph, where a node represents a variable and a directed
arc linking a pair of nodes records the probability of the child (target) node conditional on
the parent (source) node. Figure 1 illustrates an example BN.

Our ultimate goal is to find genes and SNPs associated with disease phenotypes. Therefore,
we model the SNP-gene network as a phenotype-centric network. With reference to Figure
1, the phenotype is a root node of the network, and all nodes are directly or indirectly linked
to the phenotype. This structure allows us to predict the value of the phenotype given values
for the other SNPs and genes in the network. Furthermore, we can find eQTLs from this
network: SNP1 influences expression levels of Gene2, SNP2 of Gene1, and SNP3 of Gene3.
Besides eQTL findings, we can explain other SNP-gene relations: The expression of Gene1
is simultaneously modulated by SNP2 and Gene2, implying Gene1 and Gene2 have some
functional relationship; the genotype of SNP2 is dependent on SNP3, usually an indicator of
linkage disequilibrium in the genome.

Given an integrative genomic database, our task is to infer the directed links between
variables. However, modern microarray datasets contain more than 500,000 SNPs and more
than 50,000 genes, so it is computationally infeasible to learn the network directly from the
whole data set. To overcome this difficulty, we design a learning algorithm in the following
steps.
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B. Step 1: Variable Selection
Let Xs and Yg be multinomial and Gaussian random variables representing the SNP
genotypes and gene expression levels, respectively. The phenotypes are described by a
multinomial random variable C indicating disease states. We use uppercase to denote
random variables and lowercase to denote their values.

The genes and SNPs statistically dependent on the phenotype are filtered in the first step.
The filtering can be accomplished by computing Bayes factors (BF), as follows:

and similarly for Yg with threshold τY. For each gene or SNP, the Bayes factor evaluates the
ratio of its likelihood of being dependent on the phenotype to its likelihood of being
independent of the phenotype. Equivalently, we also can consider log Bayes factors LBF for
variable selection. For thresholds τ greater than or equal to 1, the BF indicates that the gene
or SNP is statistically associated with the phenotype, however in practice other values of τ
can be chosen, generally for computational reasons.

C. Step 2: Network Learning
Without loss of generality, we assume that S SNPs and G genes were selected by the
preceding step, and the microarray data under consideration turns out to be D= {c, x1, …,xS,
y1,…, yG}. The task now is to search for a network topology that connects each variable to
the parent variable(s) with strongest modulation of its values, where the best set of parents is
determined by likelihood computation. More formally, our objective is to choose from a set
of candidate network models Ω = {M1, …, MK} the optimal network M̂ that best explains
the data D. Equivalently, we look for the highest posterior probability p(MK | D). Applying
Bayes’ theorem to p(MK | D) results in p(Mk|D) ∝ p(Mk) p(D|Mk), where p(MK) is the prior
probability of model MK and p(D | MK) is the marginal likelihood. The computation of p(D |
MK) is accomplished by averaging out parameters, denoted by a vector θK, from the
likelihood function p(D | MK,θK). The vector θK contains the values of the random vector
ΘK parameterizing the distribution of C, X1,…, XS,Y1,…,YG conditional on MK. We can
exploit the local Markov properties encoded by the network MK to rewrite the joint
probability p(D | MK,θK) as

where pa(z) denotes the values of the parents Pa(Z ) of random variables Z, and θkz is the
subset of parameters used to describe the dependence of variable Z on its parents.

As a general rule, information flows from DNA to RNA; accordingly we allow genes in the
network to have as parents SNPs, the phenotype, other genes, or any combination. In
contrast, we allow SNPs to only have other SNPs or the phenotype, or their combination, as
parents. We further assume the J samples in the database are independent. The likelihood
function becomes
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where the subscript j indicates the j -th sample. The first term can be estimated by sample
frequencies, and the second term can be derived using a linear Gaussian model [10]. The
marginal likelihood function is the solution of the integral

Due to limited space, in this paper we do not present the detailed computations, which can
be derived from [10]. Finally, the best Bayesian network model is determined by

.

D. Phenotype Prediction
Once the network is learned, we can use it to predict the phenotypes. The SNPs and genes
used to predict the phenotype variable C are those in the Markov blanket of C. The Markov
blanket of a node consists of the node’s parents, its children, and its children’s other parents
(Figure 1). To predict the phenotype of a patient, we substitute the values of each variable in
the Markov blanket from the patient’s data into the network model, and then use a local
propagation algorithm [11] to compute the most probable phenotype value.

III. Experiments
Acute lymphoblastic leukemia (ALL) is primarily considered a childhood cancer, although it
can occur in individuals of any age. Due to different responses to chemotherapy, ALL can
be classified into different subtypes, two of which are B-cell precursor ALL (BCP-ALL) and
common ALL (C-ALL). Although physicians can follow the guidelines provided by the
World Health Organization to distinguish BCP-ALL from C-ALL by lymphocyte analysis,
the genetic and transcriptional difference between these two subtypes is still obscure [12].
Using our proposed network analysis, we demonstrate what SNPs and genes lead to the
distinct ALL subclasses.

We used pediatric ALL data from the Gene Expression Omnibus GSE10792 [12]. In this
data, 28 patients were genotyped at 100,000 SNPs using Affymetrix Human Mapping 100K
Set microarrays, and the expression patterns of 50,000 genes were profiled using Affymetrix
HG-U133 Plus 2.0 platforms. Eight of the patients were BCP-ALL while the rest were C-
ALL. In the variable selection step of our analysis, by selecting genes with log Bayes factors
> 0 and SNPs with log Bayes factors > 5, we obtained 14 genes and 109 SNPs for network
analysis. In the network learning step, we restrict the maximum number of parents of each
node to be 3, and implement the learning by the step-wise K2 algorithm [10].

Figure 2 shows the network inferred from our analysis. The ALL subclasses dependency
network consists of 13 transcript probes and 13 SNP probes. Enrichment study shows that
the 13 transcript probes are mapped to 9 genes, listed in Table 1. We validated the network
by predicting the phenotypes. The ALL network achieves 100% predictive accuracy for
classifying BCP-ALL and C-ALL. To test the robustness of this network model, we
performed leave-one-out cross validation, which reaches 96.5% accuracy.
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We now illustrate how to use the result to perform eQTL identification. In Figure 2, for
instance, the SNP rs2502248 is a parent of genes CHRNA1, implying that rs2502248 is an
eQTL of CHRNA1. Moreover, the network can identify genes jointly regulated by eQTLs
and other genes. For example, the expression of CHRNA1 is co-regulated by SNP
rs2502248 and genes C8orf84 and ID4; this finding is uniquely discovered by our network
analysis that takes into account SNP-gene interactions in the interpretation of microarray
data. Comparing Table 1 and Figure 2, we observe that genes and their eQTLs are located in
different chromosomes. This observation suggests that there is a transcription mechanism
across chromosomes, and that a more detailed study to investigate the biology is warranted.

We further performed a functional study on the network using Ingenuity Pathway Analysis
(www.ingenuity.com). The known biological functions of the SNPs and genes are listed in
Table 1. The genes SEMA6D, CHRNA1, CDH2, ID4, MYO3A and C8orf84 are involved in
cellular movement and genetic disorders, and their relationship to leukemia have previously
been reported [13–14]. Although MAP1B, NID2 have not yet been associated with
leukemia, they participate in the cell signaling pathways; this finding implies that alterations
in cell signaling is a mechanism characterizing the difference between BCP-ALL and
CALL.

In the ALL network, the Markov blanket of the phenotype consists of 11 SNPs and 1
transcript, which are the only variables needed to predict ALL subclasses. To demonstrate
that the transcript-SNP combination assembles the optimal signature, we examine the
prediction accuracy of individual signatures. The results are summarized in Table 2. The
table shows that none of the signature SNPs or transcript reaches 100% accuracy alone.
Except rs2828503 which achieves 95% accuracy, all other signatures achieve no more than
88.1% accuracy. Rs2828503 is a SNP located on chromosome 21, far from known genes,
but it is identified as an eQTL for the ID4 gene in our network, indicating a possible
regulatory role in cell growth. Although the combination of SNPs seen in Figure 2 achieves
better classification of BCP-ALL and C-ALL, the single SNP rs2828503 has remarkable
performance.

IV. Conclusions
A long-term goal of biomedical research is to decipher how genetic processes influence
disease formation. With the advent of microarray technologies, we can genotype hundreds
of thousands of SNPs and assess expression of tens of thousands of genes. The large amount
of data causes difficulty in integrating two types of genomic data. This paper develops a
Bayesian network-based method to integrate SNP and gene expression microarrays. The
proposed network model describes the data as a phenotype-centric network. The algorithm
consists of variable selection and network learning. We used a pediatric ALL data to
demonstrate the feasibility of the approach. The ALL study illustrates how to conduct eQTL
investigation and predict phenotypes using the inferred network. Extending our approach to
other datasets can lead to advances in biomedical study and clinical practice.
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Fig. 1.
An example BN. Circle and square nodes denote continuous and discrete variables,
respectively.
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Fig. 2.
The SNP-gene network of ALL subclasses
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Table 1

The signature SNPs and genes for ALL subclasses prediction. Nameless SNPs and genes are shown their
probe IDs in brackets.

SNP/Gene Symbol Chromosome Location Function

MAP1B 5q13 Cell signaling, Cell morphology, Cellular assembly

C8orf84 8q21.11 Cancer, Genetic disorder

SEMA6D 15q21.1 Cellular movement,

ID4 6p22-p21 Cellular growth

CDH2 18q11.2 Cell morphology, Cellular assembly, Cellular movement

CHRNA1 2q24-q32 Cell morphology

MYO3A 10p11.1 Genetic disorder

NID2 14q21-q22 Cell signaling

[235743_at] n/a

rs2828503 21q21.2

rs713112 21q22.2

rs10483569 14q21.3

rs1036756 1p35.1

rs225710 6q24.1

rs2502248 6q12

rs1530207 3q26.1

rs1371901 3q26.1

rs638557 3q26.1

rs7727540 5p15.31

rs1147962 10q11.21

rs6577710 8q24.23

[SNP_A1650431] n/a
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Table 2

The prediction accuracy of individual signature SNPs/genes.

SNP/Gene Symbol Prediction Accuracy

C8orf84 58.1%

rs2828503 95.6%

rs713112 76.2%

rs10483569 87.5%

[SNP_A1650431] 78.7%

rs225710 85.6%

rs2502248 80.0%

rs1530207 88.1%

rs638557 88.1%

rs7727540 81.9%

rs1147962 85.6%

rs6577710 85.6%
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