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Abstract
Automatically segmenting brain magnetic resonance images into grey matter, white matter, and
cerebrospinal fluid compartments is a fundamentally important neuroimaging problem whose
difficulty is heightened in the presence of aging and neurodegenerative disease. Current methods
overlap greatly in terms of identifiable algorithmic components, and the impact of specific
components on performance is generally unclear in important real-world scenarios involving serial
scanning, multiple scanners, and neurodegenerative disease. Therefore we evaluated the impact
that one such component, the Markov Random Field (MRF) optimizer that encourages spatially-
smooth tissue labelings, has on brain tissue segmentation performance. Two challenging elderly
sets were used to test segmentation consistency across scanners and biological plausibility of
tissue change estimates; and a simulated young brain data set was used to test accuracy against
ground truth. Comparisons among Graph Cuts (GC), Belief Propagation (BP), and Iterative
Conditional Modes (ICM) suggested that in the elderly brain, BP and GC provide the highest
segmentation performance, with a slight advantage to BP, and that performance is often superior
to that provided by popular methods SPM and FAST. Conversely, SPM and FAST excelled in the
young brain, thus emphasizing the unique challenges involved in imaging the aging brain.

I. INTRODUCTION
Fully-automated methods for classifying each pixel in brain MRI imagery into one of three
tissue compartments–grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF)–
are playing increasingly important roles in characterizing brain changes that accompany
brain development, aging, and neurodegenerative diseases. For this reason, a large array of
brain tissue segmentation methods have been proposed and validated on real-world data sets.
Unfortunately, such methods are generally presented as monolithic end-to-end solutions
rather than collections of computational modules, despite the fact that most algorithms have
in common a few easily-identifiable components. Prominent components include statistical
models that relate image intensities to segmentation labels, formalisms for encouraging
certain spatial configurations of tissue labels, models of partial volume effects, and
numerical routines that solve for optimal labelings. Although an individual component may
be implemented similarly across several state-of-the art methods, the impact of that
component on segmentation performance is generally not explored. Such component-level
performance evaluation would enable the construction of high-performing segmentation
systems from high-performing components, especially now that a growing number of image
processing software platforms (Insight Toolkit, LONI Pipeline, etc.) are based on plug-and-
play assembly of overall systems.

Additionally, the rise to prominence of large-scale neuroimaging studies [1] has heightened
the need for algorithms that provide biologically-plausible tissue segmentations of large
groups of healthy, aging, and diseased brains scanned on multiple scanners at multiple
points in time. In aging, brain tissue measurements collected on the same or differing
scanners in rapid succession (over the course of days or weeks) should be highly consistent;
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GM and WM volumes should either remain stable or decline over longer time course
(months or years); and the white matter hyperintensities (WMHs) commonly associated with
aging should be properly accounted for. To date, detailed validation of brain segmentation
methods in this setting has been lacking.

The purpose of this paper is to take a first step toward component-level performance
evaluation of brain segmentation methods in multi-site longitudinal studies of aging. We
focus on optimization, comparing the ability of BP, GC, and ICM to encourage plausible
arrangements of tissue labels. Each of these optimizers was incorporated into an established
segmenter [2] to assess the impact of this component on performance. We assessed
performance on two challenging elderly scan sets in terms of tissue volume agreement on
rapidly-repeated serial scans on differing MRI scanners, and in terms of biological
plausibility of tissue changes over time. WMHs were detected on all scans independently
and omitted from GM and WM volumes. To highlight the unique challenges presented by
the aging brain, we also applied the MRF methods to simulated scans of a young, healthy
brain [3], and compared performance against a popular existing package ([4]) that uses this
same young brain to initialize its segmentations. We then indexed performance against that
of FAST [5], a widely-used end-to-end system.

II. RELATED WORK
Related work largely falls into one of two categories: performance comparisons among
multiple off-the-shelf, end-to-end brain segmentation systems; and assessment of individual
components of pixel labeling systems, especially the MRF optimizer, for other application
domains. For the former, a wealth of papers have focused on FAST and SPM. In two studies
that used simulated and real data to assess tissue segmentation accuracy within and between
segmenters, SPM was found to be more accurate than FAST. [6], [7]. Excellent agreement
between the two methods [8], and similar testretest reliability between the two [9], has been
reported, although one report suggests that FAST may be superior for measuring
longitudinal brain volume changes [10]. Mean-while, performance comparisons among
MRF optimizers have been mixed, with two studies suggesting that GC and BP perform
comparably on stereo disparity map estimation [11], [12], but another suggesting that among
GC, BP, ICM, and other competing methods, GC performs better on photographic image
stitching, denoising, and segmentation applications [13]. The one component-level MRI
brain segmentation evaluation focused on the model relating image intensity to tissue labels,
finding that on simulated data, no one model clearly does best among the ones tested [14].

III. METHODS
To provide an objective comparison between MRF optimizers, we implement them within a
common framework of an Expectation-Maximization (EM) algorithm that iterates between
estimating the statistical distributions of image intensity for each tissue class, based on
current voxel-level tissue labels, and estimating tissue labels based on the current tissue
intensity models [2].

Our implementation takes as input a T1-weighted brain MRI and a set of initial voxel-level
tissue labels. The initial labels are provided by a fully-automated process that warps the
input image to a standardized template space via a high-dimensional B-spline transformation
[15], [16]. The known tissue labels of voxels in this space, generated by a bootstrapping
procedure, are then transformed back to the space of the input image as the initial tissue
labeling.

Given the input image and initial segmentation, the main algorithm first computes the mean
and variance parameters for Gaussian models of the image intensities within each tissue
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class. These intensity models are then used to estimate the probability that each voxel
belongs to each of the three tissue classes. An MRF optimizer then solves for a voxel
labeling that respects the tissue probabilities while encouraging the labelings to be spatially
smooth. The voxel labels are then used to calculate new tissue class intensity model
parameters, and so on. The algorithm converges when the Kullback–Leibler divergence
between tissue intensity models across iterations falls below a threshold.

While the original algorithm[2] used ICM for MRF optimization, we implemented GC, BP,
and ICM each for this purpose. Our implementation also diverges from the original
algorithm by adding the warping-based label initialization, and by using a gradient filter to
prevent the MRF from encouraging spatial smoothness of the tissue labelings across edges.

1) Iterated Conditional Modes
Iterated Conditional Modes (ICM) [17] is an iterative, greedy algorithm in which each voxel
label is set to the most probable according the local evidence from tissue intensity models
and the current tissue labels of neighboring nodes only, ignoring longer-range dependencies
required for a globally optimal solution. This process is applied repeatedly until
convergence. While later methods have surpassed ICM, it is still employed in some current
literature for its simplicity and availability.

2) Belief Propagation
Belief Propagation (BP)[18] was proposed as a fast way to perform exact label inference on
tree-structured graphs, and although it is known to provide sub-optimal label estimates in
more general graphs, it performs well in practice on real-world problems [19]. In BP, voxels
pass numerical messages to neighboring voxels about their beliefs that the neighbors should
be assigned to each of the possible tissue labels. Voxels maintain their beliefs in each of the
possible tissue labels based on input from their neighbors together with the tissue intensity
models. The messages are passed iteratively until the voxel beliefs converge.

3) Graph Cuts
A well-studied computer science task called maximum-flow/minimum-cut is defined by a
graph with two designated positions connected by multiple paths of nodes and edges, where
the goal is determining a maximizing configuration of “flow” across edges between them. It
was applied to problems of binary image segmentation in 1989, allowing the use of existing
algorithms to find an exact global minimum[20]. In 2001, Boykov et. al. extended it to n-ary
label sets and proposed a faster, approximate minimization method [21]. Today, GC and BP
are both frequently used in current literature.

A. FAST—FAST is a widely used end-to-end system commonly used in MR tissue
segmentation tasks [5]. Like our method above, FAST utilizes EM and Gaussian tissue
intensity models. Unlike our implementations, its MRF model utilizes ICM for optimization
and is homogenous in space. FAST also differs by using histogram-based initializers.

B. SPM—SPM is a popular analysis software package for brain imaging data. In this work
we utilize the tissue segmentation method included in SPM version 5 [4] (here refered to as
simply SPM). Like the other presented methods, it employs EM and Gaussian intensity
models, but unlike the others, a MRF model is not incorporated. SPM uses an initialization
method similar to our implementations where the input image is warped to a known
template space, but utilizes a low-dimensional alignment for this rather than a high-
dimensional B-spline warp.
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IV. EXPERIMENTS
1) Longitudinal tissue change

We assessed the viability of the methods for estimation of elderly brain tissue change in 57
cognitively-normal elderly individuals and 60 clinically diagnosed with AD [1]. Each
individual received MRI scans at baseline and at followup visits 6 months and 12 months
later. For each method, subject, and tissue type we fit a linear regression line to the plot of
tissue volume against time, and used the line slope to measure rate of tissue change. Line
slopes indicating increases in GM or WM, or decreases in CSF, are biologically implausible
in this population; we used the percentage of subjects whose rates of tissue change were
implausible as a measure of segmentation method validity. To quantify the magnitude of
these implausibility errors, we calculated the median and maximum of the magnitudes of
such implausible change rates (Table I). ICM generally provided the smallest number of
implausible estimates, but BP provided the smallest magnitude of such implausible change.
Varying the σ parameter of the gradient filter over a range from 1 to 2, and varying the slope
of the gradient-modulating sigmoid function from 2.7 to 5, did not appreciably alter the
findings. All methods provided relatively higher numbers of implausible change estimates in
WM, whose rate of change in both healthy aging and AD is close to 0. Outside of number of
implausible WM change estimates, neither SPM nor FAST ranked highest on any
performance criterion.

2) Consistency across scanners
We scanned a group of individuals multiple times over a short period of time, on multiple
scanners, and assessed variability in estimated tissue volumes across scanners. A set of 8
cognitively-normal elderly individuals received one T1-weighted and one FLAIR MRI scan
on a pair of 1.5T MRI scanners (see [22] for acquisition details); an additional 5 individuals
received another T1-weighted and FLAIR scan on a Siemens Trio 3T MRI scanner. For each
pair of scanners, segmentation method, and tissue type, we calculated the intraclass
correlation coefficient (ICC) in estimated tissue volume between scanners (Table I). ICC
values closer to 1 indicate stronger agreement. Among MRF methods, GC and BP generally
provided the highest inter-scanner agreement, except for 1.5T agreement in CSF. Inter-
scanner agreements in GM, and agreements between 1.5T an 3T in WM, were relatively
lower for FAST, but its agreements in CSF volumes were either superior to or comparable to
the remaining methods. SPM failed to adequately segment several images, and was the
highest-ranking method on none of the performance criteria.

3) Simulated data with ground truth
Each of the five methods were used to segment the BrainWeb [3] template image, which is
provided with ground-truth tissue probability maps. Using the BrainWeb simulator [23] we
added five levels of Gaussian noise to the template image: 0%, 3%, 5% 7% and 9%. For
each noise level, tissue type, and method, a percentage error for the estimated tissue volume
was calculated by comparing it to the ground truth tissue volume (Table II). Among MRF
methods, BP and ICM provided the highest WM and CSF accuracy respectively. GC and BP
provided the highest accuracies among GM, with BP performing slightly better on the
higher-noise images. SPM gave higher accuracy GM and CSF estimates than any of these
methods on all images; SPM and FAST achieved comparablly high performance, especially
on WM and GM, and BP gave slightly better WM estimates than SPM on the lower-noise
images.
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V. DISCUSSION
The key finding of this study is that GC and BP, incorporated into an established overall
algorithm, provided elderly brain tissue segmentations that were competitive with, or
superior to, state-of-the-art methods SPM and FAST. Among the two, BP may provide more
plausible depictions of longitudinal change, but they provide comparable inter-scanner
agreement. ICM provided fewer implausible tissue change estimates, but its errors were
relatively higher in magnitude, and for the most part its inter-scanner agreement was lower.
These findings suggest that in the context of aging, there is room to improve upon the brain
tissue segmentation performance provided by off-the-shelf systems. Also, the best algorithm
choices for brain segmentation may depend on the relative importance of various
performance criteria.

As expected, SPM excelled in segmenting the young brain that it already uses in the
internals of its segmentation routine; among the MRF optimizers, BP and ICM provided the
highest accuracy on WM and CSF, respectively, while BP and GC performed best on GM.
This differing pattern of results emphasizes the importance of developing and validating
brain segmentation methods that are optimized for aging and aging-associated neurological
disease.
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Fig. 1.
Tissue segmentation outputs. Seen from top to bottom are the original T1 image and the
segmentation by ICM, BP, GC, FAST, and SPM, respectively. From left to right, the data
corresponds to a particular subject from the longitudinal tissue change experiment, the
BrainWeb simulator with 5% Gaussian noise, and a particular subject from the multiple
scanners experiment.
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