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Abstract

The thymus, an organ responsible for the development, selection, and maintenance of the 

peripheral T-cell population, is an important regulator of the immune system. Despite its 

physiological significance, it has received little attention in the medical image analysis literature. 

In practice, the anatomical location and variable shape of this gland pose challenges both in the 

image acquisition and analysis processes. We present an automated method for segmenting the 

thymus from water and fat parametric MR images that permits further analysis of volumetrics and 

tissue characterization. We compute fat ratio and water ratio parametric images and introduce the 

use of a stochastic edge detector that is embedded in a geometric variational segmentation model. 

Validation experiments of the proposed algorithm against manual delineations of the thymus 

indicate the applicability of our approach.

I. Introduction

The thymus is an organ responsible for the development, selection, and maintenance of the 

peripheral T-cell population. Age-associated decline in immune function is believed to lead 

to an increased susceptibility to infection, autoimmunity, and malignancy in older adults. 

Thymic involution, a process in which thymic parenchyma responsible for T-cell production 

becomes progressively replaced by adipocytes, which leads to a reduction in naïve T-cell 

output, may be one of the major contributors to the alteration of the immune system with 

aging [1], [2]. There has been considerable interest in developing interventional strategies, 

such as growth hormone administration, to either restore T-cell production in the involuted 

thymus or slow its rate of decline [3]. Non-invasive methods for quantifying thymic fat and 

epithelial tissues are needed so that the effects of these interventional strategies on the 

thymus can be quantified.

A key step towards characterization of thymus size and composition is the delineation of the 

thymus boundaries from other tissues that can be achieved by image segmentation 

algorithms. Image segmentation is an important component in many image understanding 

and computer vision systems with wide applicability in the biomedical imaging field [4], [5], 

[6], and recent interest that is concentrated on low contrast structures [7], [8], [9]. 
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Nevertheless, the image-based quantification of thymus has been sporadically revisited in 

the literature [10], [11] and no thymus-specific segmentation algorithm has been proposed 

so far to the best of our knowledge. Due to its anatomical location just superior and anterior 

to the heart, the thymus is subject to respiratory and cardiac motion, so MR imaging of the 

thymus becomes a non-trivial task. An example of parametric water and fat thymus images 

is displayed in Figure 1. In addition, the shape and size of thymus are highly variable 

between individuals - as seen in Figure 2- making the segmentation task even more 

complicated.

Here we introduce a segmentation method that is based on geometric model segmentation 

that uses a stochastic approach for identification of the image edges. After acquisition of 

parametric water and fat MR images with the 3-point Dixon method [12], we compute fat-

ratio parametric images to be used as input to the segmentation algorithm. We extend a 

Parzen-based stochastic edge estimator to the volumetric image domain and embed it in the 

level-set segmentation framework. In the experimental section we extensively test our 

method against reference masks produced by manual segmentation and examine the effects 

of the use of parametric images and stochastic edge detector for segmentation versus more 

conventional approaches.

II. Background: Geodesic active contours

Our goal is to delineate the thymus by addressing difficulties caused by discontinuous 

boundaries, low contrast and highly variable anatomical shape and size. Our preliminary 

tests showed that simple region growing or centroid clustering techniques typically over-

detect the thymus. On the contrary, parametric and geometric deformable models have 

produced encouraging segmentation results when applied to biomedical imaging data. A 

sub-group of geometric deformable models is implemented by the level-set formulation, 

which embeds the propagating surface in a higher dimensional function that evolves with 

time in the Eulerian coordinate system under a wavefront propagation PDE.

In this work we use the geodesic active contours algorithm by Casselles et al [13] that uses a 

geodesic minimization framework to define a geometric flow PDE:

(1)

where u is the level set function, g is the edge stopping function computed from the image 

and c is a constant velocity factor to facilitate faster convergence to the object boundary. 

The function g is positive and strictly decreasing, typically computed from the gradient 

magnitude of the image I as , where Ī is a smoothed version of I and q = 1 or 2. 

The use of a simple gradient magnitude operator works well for well defined boundaries but 

is susceptible to error in the presence of discontinuous or blurred boundaries or noisy region 

interiors.

Here we propose a more robust solution by computing the edge probability using non-

parametric probability density estimation in the local neighbourhood of each voxel. We also 
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propose to detect the edges in the feature domain defined by the signal intensity of the fat-

ratio images.

III. Computation of Fat-ratio Images

In MRI techniques the signal intensity range may differ significantly between different 

imaging sessions. This discrepancy complicates the automation of further analysis of these 

datasets. In order to overcome this difficulty we compute the fat-ratio (FR) image from the 

acquired fat (F) and water (W) images using voxel-wise algebraic operations:

(2)

where w denotes the spatial coordinates in the d-dimensional space, w ∈ Nd. The FR voxel 

intensities range in the more amenable space of [0, 1]. Still, the main pitfall of using (2) is 

that it produces very high intensities in regions filled with air because the denominator 

becomes very small. The correct signal intensity of these regions should be zero since they 

contain neither fat nor water; the signal in these regions is noise despite its high intensity. 

We address this issue by computing the summation of F and W and then applying Otsu 

multiple thresholding–with number of classes C = 4–to the resulting sum. We label the 

group of the smallest intensity as air and set the voxels belonging to this group to zero in the 

previously computed FR. This results in suppression of the voxel intensities corresponding 

to air. It is worth noting that we can also compute a water ratio image WR following similar 

steps as above. An example of the intermediate and final stages of fat ratio computation with 

air voxel suppression is illustrated in Figure 3.

IV. Stochastic Edge Estimation

We extend the formulation of the stochastic edge estimator proposed in [14] to volumetric 

medical imaging data and use it in the level-set framework to drive thymus segmentation. 

The rationale behind this edge estimator assumes that the image intensity field can be locally 

approximated by homogeneous regions or edges. The probability density function in the first 

case can be approximated by a unimodal distribution and in the second case by a bimodal 

distribution. An index of bimodality is given by the probability density of the samples’ 

mean. As explained in [14] in the case of a homogeneous region the likelihood of the mean 

will be high, whereas for an edge the likelihood of the mean will be low.

We estimate the probability density by a non-parametric technique in order to avoid errors 

caused by the small sample size and the presence of noise. In addition, non-parametric 

techniques have the advantage that they do not make any explicit assumptions about the 

underlying distribution; rather, the data samples are used as models. Here we use the widely 

known non-parametric technique of Parzen kernels. The probability density estimate f̃(X) of 

a function f at point X is computed by:

(3)
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In this equation K is the kernel function, which is usually of Gaussian type, h is the Parzen 

bandwidth parameter, which controls the desired level of detail in edge estimation, Xi is the 

sample at index i in the kernel window W, N is the number of samples inside the kernel and 

p is the dimensionality of variable X. The edge map is computed by sliding the window W, 

estimating the probability density at the mean vector of the voxel intensities inside W and 

assigning the probability density to the center voxel. In this way we form an d-dimensional 

image with the same attributes as the input.

V. Experiments and Discussion

We acquired the images using a Philips 3T Achieva scanner equipped with a 32-channel 

cardiac/torso coil, pneumatic respiration sensor and MRI-compatible vector cardiogram 

(VCG) unit. We first performed a single-echo 3D fast field echo (eTHRIVE) scan within 

one 20 second breath-hold, and then divided the thymus extent along the superior-inferior 

axis into 4 to 8 contiguous groups of 10 axial slices. We scanned each group in a single 20 

second breath-hold using a 3-point Dixon [12] eTHRIVE sequence with 1.5 mm isotropic 

voxels, field of view 360 × 400 × 150mm (A/P × R/L × H/F), SENSE acceleration factor 1.8 

× 1(R/L × H/F), flip angle=10°, NEX = 1, TR = 3ms and TE = 1.4ms. To ensure reproducible 

breath-holds we displayed and recorded the respiratory sensor absolute pressure on a 

PowerLab data acquisition system (AD Instruments).

We applied the segmentation algorithm to 15 datasets and validated it against reference 

thymus masks provided by RR and SM. The test data were divided into two groups and each 

reader manually delineated the thymi of one group using the MIPAV software package 

(NIH, Bethesda, MD). We then executed our automated algorithm over the same database 

and computed measures of overlap, classification accuracy and the Dice score [15] between 

the reference and tested methods. An example of manual and automated segmentation on 

one of our datasets is displayed in Figure 4.

We re-tuned the key parameters of the Parzen edge estimator and the geodesic active 

contours following exhaustive search optimization of the DICE score. We first defined the 

parameters, range (lower and upper bounds) and granularity (the number of samples) of the 

search space. We then executed the segmentation algorithm over the complete database and 

computed validation score statistics for each parameter setting in the search space. We 

ranked the average Dice scores and selected the algorithm parameters producing the best 

performance.

In the validation experiments, we concentrated on the effectiveness of the key elements in 

our approach. In the first experiment we compared the segmentation accuracy produced by 

different input images to our algorithm, i.e., the fat-ratio only FR, joint Dixon fat and water 

images {F, W} and the Dixon fat image F only. In Table I, we observe that FR images 

produce clearly more accurate thymus segmentation than the paired analysis of Dixon fat 

and water images {F, W} or the analysis of Dixon fat images F only. The main reason for 

this is that the FR image intensities are restricted in [0,1] therefore are more amenable to 

segmentation, whereas the original voxel intensities of F and W images may vary between 

different image acquisitions. Further, the suppression of noise in the air regions of the FR 
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images significantly facilitates the edge estimation and level-set segmentation processes. We 

also note that the joint analysis of the F and W images outperforms the F only analysis 

because the additional component W improves the separation between the thymus and its 

adjacent tissues.

An additional experiment was to compare the segmentation produced by the reported 

probabilistic edge map with the conventional gradient magnitude. The experimental results 

presented in Table I show a small improvement in Dice score when the stochastic edge map 

is used. A qualitative comparison suggests that the stochastic edge map always produces a 

standardized probability map that can be easily manipulated in subsequent analysis whereas 

the gradient magnitude range will vary depending on the range of the input values. In 

addition, the sensitivity of Parzen-based edge estimation can be adjusted by the Parzen 

kernel bandwidth h that is expected to be advantageous in a multiple scale analysis scheme, 

whereas the gradient magnitude operators could be modified only by application of pre-

filtering to the original image. On the other hand, the gradient-based edge detection is 

computationally simpler, saving execution time.

In conclusion, we have presented a systematic method for segmentation of the thymus using 

fat and water parametric MR imaging data. To the best of our knowledge, this is the first 

report of automated segmentation of the thymus in MR images. A key element of this work 

is the computation of parametric fat-ratio and water-ratio images from the fat and water 

images that were originally acquired. The fat-ratio and water-ratio parametric images were 

found to be more amenable to segmentation mainly due to the restricted range of voxel 

intensities. Another significant advantage of these images is that they can be readily used for 

characterization of thymus composition, which is one of the clinical applications of this 

method. We should also note the first use of a Parzen-based edge estimator in a variational 

framework. This method produces scaled output in [0,1] and can be applied at variable 

levels of detail controlled by the Parzen bandwidth. Another desirable property is that this 

stochastic edge estimator can be readily extended to d-dimensional domains for vectorial 

image analysis. The validation against manual thymus delineations indicates that the 

proposed approach produces encouraging results and can address challenges posed by the 

thymus’ anatomical location, as well as its variability in shape and size. Future work will be 

directed towards addition of more test data, evaluation of manual segmentation variability, 

and improvement of segmentation accuracy.
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Fig. 1. 
Images depicting the location of the thymus in axial (left) and sagittal (right) views. First 

and second rows: fat and water Dixon MRI of the same participant. Third row: manually 

segmented thymus region marked with green color. Because of cardiac and respiratory 

motion, the boundaries between the thymus and adjacent tissues frequently appear blurred 

and/or discontinuous.
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Fig. 2. 
Three manual segmentations of the thymus of different participants in our dataset. We note 

here the highly variable thymus anatomy; the volumes of the displayed thymus masks are 

43.97 mL (left), 66.4 mL (middle) and 12.6 mL (right) respectively.
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Fig. 3. 
Example of computation of a fat ratio image and removal of regions filled with air. Top row: 

fat (left) and water (right) Dixon images of the thymus in the same participant. Bottom row: 

fat-ratio parametric image before (left), and after (right) removal of the air regions. The 

voxels corresponding to air take on high values because of low signal intensities in both the 

fat and water images.
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Fig. 4. 
Manually segmented reference mask (left) and automated segmentation result (right) in the 

physical space.
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TABLE I

Average Dice scores and averages of Dice score differences produced by our segmentation algorithm after 

using the stochastic (S) or gradient magnitude-based edge detector (G), applied to the fat ratio image only 

(FR), or the joint Dixon fat and water images ({F, W}), or the Dixon fat images only (F).

Algorithm Ave. Dice S. Algorithm Ave. Dice S.

SFR 0.691 GFR 0.686

S{F,W} 0.5 G{F,W} 0.488

SF 0.362 GF 0.396

Comparison Ave. Diff. Comparison Ave. Diff.

SFR − GFR 0.005 SFR − S{F,W} 0.19

S{F,W} − G{F,W} 0.013 S{F,W} − SF 0.138
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