
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic protocol field inference for deeper protocol understanding / Bermudez, Ignacio; Tongaonkar, Alok; Iliofotou,
Marios; Mellia, Marco; Munafo', MAURIZIO MATTEO. - ELETTRONICO. - (2015), pp. 1-9. (Intervento presentato al
convegno 2015 14th IFIP Networking Conference, IFIP Networking 2015 tenutosi a Toulouse, FR nel May 2015)
[10.1109/IFIPNetworking.2015.7145307].

Original

Automatic protocol field inference for deeper protocol understanding

Publisher:

Published
DOI:10.1109/IFIPNetworking.2015.7145307

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2625370 since: 2015-12-12T21:57:18Z

Institute of Electrical and Electronics Engineers Inc.

Automatic Protocol Field Inference for Deeper

Protocol Understanding

Ignacio Bermudez, Alok Tongaonkar

Symantec Corp.

{ignacio bermudezcorr,

alok tongaonkar}@symantec.com

Marios Iliofotou

Caspida Inc.

marios@caspida.com

Marco Mellia, Maurizio M. Munafò

Politecnico di Torino

{marco.mellia, maurizio.munafo}@polito.it

Abstract—Security tools have evolved dramatically in the
recent years to combat the increasingly complex nature of attacks,
but to be effective these tools need to be configured by experts
that understand network protocols thoroughly. In this paper
we present FieldHunter, which automatically extracts fields and
infers their types; providing this much needed information to the
security experts for keeping pace with the increasing rate of new
network applications and their underlying protocols. FieldHunter
relies on collecting application messages from multiple sessions
and then applying statistical correlations is able to infer the
types of the fields. These statistical correlations can be between
different messages or other associations with meta-data such as
message length, client or server IPs. Our system is designed to
extract and infer fields from both binary and textual protocols.
We evaluated FieldHunter on real network traffic collected in
ISP networks from three different continents. FieldHunter was
able to extract security relevant fields and infer their nature for
well documented network protocols (such as DNS and MSNP)
as well as protocols for which the specifications are not publicly
available (such as SopCast) and from malware such as (Ramnit).

I. INTRODUCTION

In recent years the attacks against networks have become

more complicated. To defend against these complex attacks,

network defense tools have also evolved to use more sophis-

ticated mechanisms. For instance, firewalls have moved from

using simple packet-filtering rules to application level rules [1]

that need deeper understanding of the protocols being used

by network applications. Similarly, intrusion detection systems

are increasingly using vulnerability based signatures [2] that

contain information specific to network protocols. Access

control mechanisms are also evolving from IP address based

policies to fine-grained policies which use the protocol objects

such as users and message types.

It is clear that configuring all of the above applications

require a deeper understanding of network protocols. However

comprehending protocol specifications is a very tedious task.

The traditional approach of manually reverse engineering a

protocol cannot cope with the rate at which new network

applications are made available to the market and brought

into workplace. Moreover, many of the proprietary protocols’

specifications are not publicly available. As a result, security

administrators have to configure these security tools with

very limited visibility into the network protocol space; thus

adversely affecting the efficacy of these tools in securing the

network.

The above technology challenge has led to a growing

interest in the research community in the development of

techniques for automating the reverse-engineering process for

extracting protocol specifications, either from binary code

analysis [3]–[7] or from network traffic [8]–[14]. Most of

the times network application binaries are not available to

the network operators limiting the usefulness of code analysis

based techniques. Hence, we focus on network traffic based

analysis. The state-of-the-art techniques in this area try to infer

message formats or underlying protocol state machines.

In this paper, we take a complimentary approach of identify-

ing field boundaries and inferring the field types for protocols.

Thus, we study well known protocols and identified a set of

field types that can used in a multitude of security applications.

We focus on identifying: (i) Message Type (MSG-Type), such

as flags in DNS protocol or GET/POST keywords in HTTP, (ii)

Message Length (MSG-Len), usually found in TCP protocols

to delimit application messages in a stream, (iii) Host Identifier

(Host-ID) such as Client ID and Server ID, (iv) Session Iden-

tifier (Session-ID) such as cookies (v) Transaction Identifier

(Trans-ID) such as sequence/acknowledgement numbers and

(vi) Accumulators such as generic counters and timestamps.

We note that a protocol may not have all the above types

of fields. Also, different fields may be useful for different

security applications. For instance, Host IDs can be used by

access control systems while Message Length can be used by

Intrusion Prevention Systems to prevent buffer overflow kind

of attacks.

We built a system, called FieldHunter that uses a two step

methodology: (i) Field extraction: here we extract fields from

the protocol messages. Due to the different characteristics

of fields in textual and binary protocols, we use techniques

specific to each type to extract fields. (ii) Field type inference:

this step is common for the fields extracted in both textual

and binary protocols. The key contribution of our work is the

development of various heuristics based on observed statis-

tical properties for inferring the different field types. In our

evaluation, we used real network traces from three different

Internet Service Providers (ISPs) to validate that we were

able to extract various field types from well known protocols

such as Real Time Protocol (RTP) as well as protocols

without any publicly available specification such as SopCast.

In addition we fed FieldHunter with Ramnit command and

Fig. 1. Terminology diagram.

control traffic extracted from the same traces. Ramnit traffic

is unencrypted first and then analyzed by FieldHunter, which

represents a milestone for our system, that shows how useful

it is on providing valuable information about specific security

applications such as this malware.

The rest of the paper is organized as follows. §II defines

the terminology used throughout the paper, §III provides

details about the core algorithms used by FieldHunter to deal

with binary and textual protocols. Performance evaluation and

parameter tuning is presented in §IV. We discuss related works

in §V and finally conclude the paper in §VI.

II. TERMINOLOGY

Figure 1 gives a pictorial representation of the terminology

we use throughout this paper. Our methodology takes as input

a set of conversations (i.e., flows defined by the usual 5-

tuple) of a particular application. We refer to such a set

as collection. Conversations consist of exchanged messages

between two hosts. Messages from client to server are denoted

as C2S (dark-colored) and from server to client as S2C1(light-

colored). Messages consist of different pieces of information

enclosed in fields. As we show in the Fig. 1, conversations

evolve horizontally over time (t) and messages can be com-

pared vertically across multiple conversations.

To enable the analysis of a collection, the messages in the

conversations can be grouped together in the following ways:

(i) Grouping messages based on their position in conversations,

e.g., all third messages in C2S direction. (ii) Grouping together

all the messages of a conversation. This essentially captures

session-like information (Note that (i) and (ii) are very similar

to vertical and horizontal sub-collections as defined in [15]).

(iii) Grouping together messages by direction, e.g., all C2S

messages. Message grouping is instrumental for FieldHunter

to find patterns in the collections. Then if these groups do not

contain enough message diversity, FieldHunter cannot unveil

the field types it is designed for.

It is worth mentioning that the formation of protocol col-

lections used by FieldHunter is beyond the scope of this

work. However, we suggest two alternatives for the same. One

1Client is the initiator of the conversation and the server is the other end.
Hosts are identified by their IP address.

Fig. 2. FieldHunter system diagram.

way is to use a testbed in which the application is executed

while the traffic exchanged is being captured. Alternatively, the

collection can be extracted from passive observation of actual

traffic by the means of network classifiers, i.e., by filtering all

conversations involving a well-known port, or by relying on a

Deep Packet Inspection (DPI) classifier [16].

Application conversations are transported by TCP/UDP

segments and are extracted by FieldHunter using the following

methodology: for messages transported over UDP it is as-

sumed that each segment contains one application message; for

TCP it is assumed that TCP PUSH flags delimits the beginning

of a new application message from the end of another one. An

accurate message extraction can be done once message length

has been identified by FieldHunter.

III. DESIGN

In this section, we describe the system design and discuss

the two components of FieldHunter: (i) Field Extractor (ii)

Field Type Inference Engine These components are run in

sequence to obtain a field summary report (which describes

the identified fields and their types) as shown in Fig 2.

A. Field Extractor

Textual and binary protocols differ greatly in the way fields

are used. Textual protocols typically use delimiters such as “:”

or “0x0D0A” to separate fields. On the other hand in binary

protocols, fields either have fixed offset and size or offsets and

lengths that are specified in some preceding fields.

1) Textual Protocols: Field extraction for textual protocols

boils down to identifying field delimiters. However, this is a

non-trivial task as many protocols use multiple delimiters for

different purposes. For instance, consider a message such as

TIME-OUT: 60 # PORT: 54001. In this message, ”#” is

used to separate out the fields, while ”:” is used to separate

out key and value in a field. We categorize delimiters in three

types: (i) Field delimiter (Df): separates the different fields

of a message, e.g., the ‘#’ character in the above example. (ii)

Key-value delimiter (Dk−v): separates the key from its corre-

sponding value, e.g., the “:” in the same example. (iii) Value-

value delimiter (Dv−v) separates different values for the

same field, e.g., the comma ‘,’ in the field AllowedPorts:

4534, 80, 53. FieldHunter identifies Df and passes fields

along with their Dk−v to the Field Type Inference Engine.

Our implementation does not analyze Dv−v . Hence we do

not discuss this type of delimiter in the paper.

Common choices of Df and Dk−v delimiters are shown

in Table I. The delimiters are derived using documentation

TABLE I
Common text-based protocols and their observed delimiters. GAME:

Team Fortress (game), TEL: Telnet, CS: Counter Strike (game), GNU:
Gnutella.

Prot. Df Dk−v Prot. Df Dk−v

HTTP 0x0D0A ‘:’, ‘ ’ FTP 0x0D0A ‘ ’

SMTP 0x0D0A
‘:’, ‘ ’,

‘-’
TFTP 0x1D 0x1E

POP3 0x0D0A ‘:’, ‘ ’ CS 0x5C 0x5C

RTSP 0x0D0A ‘:’ GNU 0x0D0A ‘:’, ‘ ’

SIP 0x0D0A ‘:’, ‘ ’ RTP 0x0D0A ‘:’, ‘ ’

GAME 0x00 0x00 MSN 0x0D0A ‘ ’

TEL 0x0D0A ‘:’, ‘ ’

of the listed protocols, and are actually observed in our data

sets. As we see, there are popular delimiters, such as 0x0D0A

(carriage-return and line-feed pair), as well as non-standard

delimiters, such as 0x00 (null), 0x1D, and 0x5C.

Generally speaking, FieldHunter identifies delimiters using

three key observations: (i) Delimiters are non-alphanumeric

sequences of 1 or 2 characters. (ii) Delimiters have a high

horizontal and vertical frequency compared to other non-

alphanumeric sequences in a textual protocol. (iii) There is

only one Df that splits up the messages into key-value

pairs (UID: 1234, Content-length: 872) or sin-

gleton keywords fields (HELO, LOGOUT, OK, FAILED).

FieldHunter first identifies Df and then proceeds with the

Dk−v if fields are key-value paired.

a) Field Delimiter Inference: To infer the Df , Field-

Hunter finds frequent sequences of non-alphanumeric char-

acters in the protocol which are considered to be delimiter

candidates d. Then from among all the candidates it chooses

only one (Df = d), such that it splits up any protocol message

into valid key-value pairs and singletons. Validity of key-value

pairs and singletons is check by comparing common prefixes

and exact matches respectively.

b) Key-Value Pair Delimiter Inference: Once Df has

been detected, messages are split into fields from which we

need to identify key-values along with Dk−v , and single-

tons. The identification of Dk−v is taken in three steps:

(i) FieldHunter clusters fields of the same type by using

the Longest Common Prefix (LCP); (ii) by re-clustering the

clusters, FieldHunter cleans up possible outliers caused by two

or more keywords sharing a common prefix. E.g., Port: and

Point: have Po in common, and finally (iii) we choose the

Dk−v as the non-alphanumeric suffix part of the LCP of each

group. In the case that all the LCPs are identical for a group,

then we say that the field contained by the group is a singleton

and we do not search for a delimiter.

2) Binary Protocols: In binary protocols, fields represent

serialization of variables as they are structured in memory.

To parse these fields, message recipients need to know the

structure of the data, i.e. the offset and length of the fields.

Unfortunately FieldHunter, does not know the message data

structure. To overcome this FieldHunter splits messages into

n-grams which are used by Field Type Inference Engine. We

observe that for most of the field types, the n-grams in the field

also show characteristics similar to the field. For instance, if

a protocol has a 32-bit Host ID field, the four 8-bit n-grams

also exhibit similar statistical properties as Host ID. In such

cases, we identify the field type for the single n-grams and

then check whether consecutive n-grams can be merged into

a larger field of the same type.

We note that this assumption does not always hold. For in-

stance, a 32-bit Accumulator field may increment by one every

time. But given the number of samples that we may consider

in our collection (say order of thousand), the most significant

bits may show up as constants and not accumulators. This

issue is circumvented for fields such as Message Length

and Accumulators (numerical representations) by considering

n-grams of larger size first, say 32-bit n-gram, and then

iteratively reducing n-gram size till the whole n-gram fits

the field. Moreover we consider byte endianness for fields

that contain numerical representations, heuristics are repeated

trying both little-endian and big-endian. This is not the case

for fields that can be interpreted as categorical representations.

B. Field Type Inference Engine

Our approach is based on the following key observation:

Fields with different types change differently over specific

sub-collections. For instance, a field that consistently takes

a distinct value for each IP address may represent a Host-

ID. Similarly, fields that increment by one over sequential

messages of a conversation may be part of a message counter.

FieldHunter assigns types to fields by using different sta-

tistical tests that are further explained. For clarity, in the rest

of the paper we use the term “n-gram” to interchangeably

mean “binary n-gram” or “textual field”, e.g., when it is

stated “n-gram entropy is computed” actually it means that

either “binary n-gram entropy is computed” or “textual field

entropy is computed”. On the other hand, we use specific

statistical tests based on different associations between ob-

served variables to infer different field types. The association

between two variables (a, b) can be of the following types: (i)

“numerical correlation” (a ⇔ b), e.g., message length field is

numerically correlated to the observed length of the message,

(ii) “categorical correlation” (a ∈ A ⇔ b ∈ B), e.g., user ids

correlates categorically with IP addresses and (iii) “causality

correlation” (a ⇒ b), e.g., certain type of message will result

in a particular response from server.

The labeling process works by making a hypothesis that a

given field is of a certain type. When the hypothesis holds,

i.e., the field exhibits the statistical behavior of the field type,

FieldHunter labels the field as such. We note here that a

field may be labeled as multiple field types. For instance,

an acknowledgement number field could be labeled as both

Transaction ID as well as an Accumulator.

In Figure 3 the more complex heuristics are illustrated

using block-diagrams. Blocks in the diagrams represent dif-

ferent tests; horizontal/vertical arrow inside a block defines

horizontal/vertical sub-collection analysis and thresholds are

Fig. 3. MSG-Type (left), MSG-Len (center) and Trans-ID (right) modules.

highlighted in italic. More details on parameter selection are

given is §IV-D.

1) Message Type (MSG-Type): Contains information

about the underlying protocol state machine and its values

represent the semantic of the whole message. Thus, the content

of MSG-Type field is used by the receivers to understand what

type of message is received, e.g., a request, a status update,

an error message, etc.

Our methodology is based on two key observations: (i)

MSG-Types takes values from a well defined static and small

set; and (ii) represents transitions in an underlying protocol

state machine. Hence, by pairing request/response messages,

there is a high chance that their corresponding MSG-Type

fields are related. The leftmost diagram in Fig. 3 describes

the MSG-Type labeling process.

Using observation (i) above, FieldHunter first looks for n-

grams that vertically are neither random nor constant. Ran-

domness of a n-gram x can be measured using the entropy

H(x) metric. Let pi be the probability of having the n-

gram taking the value i. Then H(x) =
∑

i −pilog2pi, where

0 · log(0) = 0. By definition for 1-byte n-grams (8-bits)

H(x) takes values between 0 (constant) and 8 (perfectly

random). Then n-grams that are unlikely to be part of a MSG-

Type field are discarded. Once some fields are discarded,

according to observation (ii), the next step is to check for

n-grams that have a causal relationship with n-grams in the

response messages. Here FieldHunter uses categorical correla-

tion metric. Towards this end, FieldHunter measures causality

using the information theoretic metric I(q; r)/H(q), where

I(q; r) = H(q, r)−H(q|r)−H(r|q) is the mutual information,

that measures the information shared by a request (Q) and a

response (R) [17].

FieldHunter takes n-grams for which causality is greater

than a threshold of 0.8 as MSG-Type candidates. For the case

of binary protocols, if multiple n-grams are candidate, these

are grouped together and causality is checked again. Thus, if

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

P
ea

rs
on

 C
or

re
la

tio
n

n-gram Offset [bit]

Fig. 4. n-gram correlation with MSG-Len for SopCast.

a group coincides with the actual MSG-Type field, then the

whole candidate group should also satisfy the initial hypothesis

of causality. For example, suppose n-grams at byte offset 1,5,6

show a large causality so that q1 ⇒ r1, q5 ⇒ r5, q6 ⇒ r6.

Then it checks whether the groups (q1, q5, q6) ⇒ (r1, r5, r6)
holds the causality. If this holds, the field containing n-grams

at offsets (1, 5, 6) are returned as the MSG-Type field.

2) Message Length (MSG-Len): Our goal here is to find

fields that report the length of the application message. As

such, it is expected that MSG-Len field is linearly correlated

with the actual message size. For higher confidence, two

different tests are used for identifying linear correlations.

The complete MSG-Len test algorithm is depicted in the

central diagram in Figure 3. This heuristic does not use the

typical 1-byte n-gram and for textual protocols it decodes the

content of the field as a number. The reason why 1-byte n-

grams do not provide good results is that MSB and LSB are not

correlated in this case. Hence, FieldHunter iteratively selects

n-gram windows of size 32, 24, 16-bit that are shifted at a step

of 8-bit. Such windows sizes are the standard sizes used to rep-

resent integers in computer memory. At each iteration Pearson

correlation coefficient tells whether the numeric values of the

fields are associated with the length of the messages. Notice

that the computation of this correlation could be affected by

biases due to some popular messages in the collection of the

same size. E.g. 98% of messages are length 40 bytes. To avoid

such biases, we stratify messages by length, creating in this

way a size heterogeneous sub-collection not affected by the

bias problem. We select all the fields such coefficient is above

a certain threshold as MSG-Len candidates. Empirically we

found 0.6 to be a good threshold.

Figure 4 show the results of applying the Pearson correlation

to the SopCast protocol collection obtained from the one of

our traces. In this example, we use 16-bit n-gram. Coefficient

spans from zero to one, where zero indicates no correlation

and one represents a strong correlation. In Figure 4 there are

two clear spikes, one at offset 88-bit and the other at 168-

bit that suggests the presence of a MSG-Len (see § IV-B1).

We cross-verified these results using information extracted by

manual protocol reverse engineering attempts found on the

Internet.

Once the candidates are found, the next step is to conduct

a test to verify that the candidates indeed are carrying infor-

mation regarding the length of the message. The hypothesis is

that the message length expresses the length of the message

in an unit of measurement, e.g. bytes, words, etc., and that it

describes the length of data starting from a given byte offset.

In other words, we state that the message length is ruled by the

following linear equation: MSGlen = a · FIELDvalue + b,
such that MSGlen ∈ N is the observable message length,

FIELDvalue is the value taken by candidate field, a > 0
accounts for the unit of measurement and b ∈ N is the

starting offset of the data described by the field . To verify

the assumption, the linear equation is solved and (a, b) are

obtained. This process is repeated taking all possible message

pairs with different lengths. Finally a candidate is considered

as a true MSG-Len field if for most of pairs (> 90%) the

solution is acceptable (a > 0 ∧ b ∈ N).

3) Host Identifier (Host-ID): Identifies entities beyond

the network addresses. Its functionality permits network om-

nipresent identification of a particular host or persona. For

instance, in peer-to-peer applications, a “Peer-ID” field can

uniquely identify a specific peer/host in the whole overlay,

even when the peer is behind NAT or is moving over multiple

networks.

The heuristic assumes that all messages sent by the same

host carry the same Host-ID, i.e., for a given source IP,

messages are likely to have the same Host-ID. Then Host-

ID should be strongly correlated with the IP address of the

sender. Based on this assumption, FieldHunter computes the

categorical correlation R(x, y) = I(x; y)/H(x, y) ∈ [0, 1] of

n-grams x with the sender IP address y, where H(x, y) is the

joint entropy (that measures the total amount of information

that x and y jointly carry). That is, for each x ∈ X ,

there is a different y ∈ Y , and vice-versa. N-grams with

correlation coefficient greater than certain threshold (say 0.9)

are selected as candidates. Finally, consecutive candidate n-

grams are merged into fields of at least a minimum length

(4 Bytes). Notice that the adoption of statistical tests, such as

correlation, makes algorithms robust to handle traffic where

assumption might not always hold; such as when NAT is used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
or

re
la

tio
n

n-gram Offset [bit]

Trans-ID TYPE Misc. SRC-Addr User-IDSess-ID

Fig. 5. n-gram correlation with Client IP (Vuze DHT).

0
1

2
3
4
5
6
7
8

 0 50 100 150 200 250 300

E
nt

ro
py

n-gram Offset [bit]

Trans-ID TYPE Sess-ID Misc. Src-Addr User-ID

Fig. 6. The n-gram entropy for Vuze DHT over a C2S vertical sub-
collection.

Figure 5 shows the categorical correlation between n-grams

in a vertical collection and the corresponding source IP address

for the Vuze DHT collection. Note how R(x, y) is very close

to one (high correlation) for n-grams that represents the Client

Address and the Client-ID. However, we also observe that the

first n-grams of the Session-ID are also correlated with the

sender IP address. The explanation for this protocol peculiarity

is found in the Vuze’s specification. Vuze’s Session-ID is an

application’s global counter randomly initialized at the start-

up and incremented by 1 for each new conversation. Hence,

the most significant bits in the Session-ID are likely to be the

same for all messages sent by the same sender. By imposing

a minimum length constraint, FieldHunter can discard such

fields.

4) Session Identifier (Session-ID): Keeps track of

application-level sessions that span over multiple conversa-

tions. Semantically, it is similar to the use of Cookies in

HTTP.’ Since the Session-ID remains constant between a pair

of endpoints, FieldHunter correlates the n-grams to the pair

of client and server IP addresses. Then we proceed using the

same categorical correlation as we do for Host-ID.

5) Transaction Identifier (Trans-ID): The algorithm we

use to detect Trans-IDs is illustrated in the rightmost diagram

in Figure 3. It is assumed that Trans-ID are randomly picked

by the transaction creator and then copied back in the replies.

Therefore, we first search for n-grams that appear random

across both vertical and horizontal collections. Randomness

is measure using entropy as before.

Figure 6 shows the entropy of n-grams for the Vuze DHT

protocol [18] taken from the same trace as above. The figure

shows the entropy of the first 36 n-grams (reported on the

x-axis at the corresponding offset) in the C2S vertical sub-

collection. On the top, the protocol field names are reported

as extracted from documentation. In this example n-grams with

high entropy are good candidates for the Trans-ID field.

Next, all consecutive request/response messages are paired

and for each of them, it is checked whether the n-grams/field

take the same values. If the check passes, then the pair of n-

grams are added to a set of Trans-ID candidates. Note that

request/response message format can change and Trans-ID

may appear at different offsets (e.g. in Vuze DHT). Therefore,

the heuristic does not assume the protocol message formats

are the same in for both directions.

Finally, FieldHunter measures the consistency of these

candidates over all the conversations, i.e., n-gram candidates

with enough support (say > 0.8) are finally marked as

such. Minimum support allows some degree of mismatch,

e.g., caused by message reordering or retransmission in the

collection. Finally, consecutive n-grams are merged to form a

field of at least minimum length (2 Bytes). For textual protocols

such n-gram merging is not needed.

6) Accumulators: These fields typically represent message

sequence numbers, acknowledgement numbers, timestamps,

etc. Thus, we search for fields that have their values increasing

over consecutive message within the same conversation. To

identify such fields, we use the difference, denoted as ∆,

between values of n-grams in two subsequent messages. We

expect ∆ to be positive and “fairly constant”. Notice that

differences are not required to be perfectly constant. For

instance a byte-wise counter in a protocol of variable size

messages would have quite variable ∆.

We search for accumulators in C2S and S2C directions

independently with each other. As with the MSG-Len field,

here we do start with fixed size n-grams. We assume accu-

mulators are encoded in fields of a given field length, e.g,

64, 32 and 16 bit. For each field offset, we compute the

vector of increments ∆ considering each consecutive message

pair in each conversation. In order to use one threshold that

captures the variations among ∆s of different scales (e.g.,

sequential counters vs millisecond timers), we compress ∆
using a logarithmic function; ∆̂ = ln∆. Next, we analyze ∆̂
and select those that have relatively low entropy, i.e., ∆̂ looks

“fairly constant”.

C. Field Summary

As final result FieldHunter provides information of the field

type extracted automatically out of known/unknown protocols.

It provides two separate reports (corresponding to each direc-

tion of messages) for each protocol. The report contains the

set of fields for which the types have been inferred. Note that

we may not identify the type for some of the fields and will

skip them in the report.

IV. EXPERIMENTAL RESULTS

This section presents the result of running FieldHunter

using ISP packet traces reported in § IV-A. A DPI tool

feeds FieldHunter with protocol collections. In general, each

collection presents different characteristics. For instance, some

may contain wrongly classified flows caused by DPI false

positives. Other may present little diversity, e.g., showing

only conversation exchanged with a handful of servers, etc.

TABLE II
Summary of the traces we use.

Name Location Network Location Date Duration

TR1-2012 Europe Edge 04-2012 24 h
TR2-2009 S. America Backbone 10-2009 4 h
TR3-2007 Asia Backbone 01-2007 7 h

Different traces generate different collections that are sepa-

rately analyzed (for cross verification purpose). We consider

a protocol collection as valid only if it has at least 200

conversations for textual or 2,000 for binary protocols; see

§ IV-D for more details. All our parameter selection is made

using TR1-2012, whereas we tested FieldHunter on all three

traces.

The subset of protocols for which we present results are

summarized in Tables III and IV for binary and textual

protocols, respectively. Both straightforward and challenging

cases are considered.

A. Datasets

We evaluate FieldHunter using three different traces (Ta-

ble II). Data were collected from different geographic regions

(Asia, Europe, and South America), between years 2007-2012.

All traces contain full payload from network connections.

Given the large size of the TR1-2012 trace we limited the

payload per connection to the first 1048 bytes2.

B. Evaluation of Binary Protocols

Table III reports the results for nine binary protocols. Seven

of these protocols have known specifications. The table reports

the number of discovered and Ground-Truth (GT) bits, for

both C2S and S2C collections. Note that in many cases in

Table III, the number of discovered bits is larger than the GT

bits. This is because many protocols such as ED2K carry other

protocols. Since FieldHunter works on complete payload of

the conversation, it identifies fields within the inner protocol

as well. This is a limitation of how the DPI generates the

collection. The average AoC (Accuracy over Coverage) is 0.83

in the worst case. We observe that typical inaccuracies are

due to the Accumulator type. For counters that span over

large fields (e.g., a 32-bit long number), FieldHunter easily

identifies the less significant bits, but tends to miss the most

significant bits. This is because the latter appear as “constant”,

i.e., data do not variate and statistical inference cannot take

place. Finally, the last two rows in Table III show two closed

protocols, such as SopCast and PPLive. From the results

depicted in the table, we show details for three interesting

case studies.

1) ED2K and KADEMLIA: ED2K and KADEMLIA

eMule messages are preceded by a common header which

is used as GT. FieldHunter correctly identifies such common

header. Moreover it discovers additional fields, that sum up to

2We did not observe this to cause any notable problems. Only for some
protocols with long payloads, such as HTTP, portions of the payload and
rarely portions of the application-layer header were not fully captured.

TABLE III
Summary of the results from running FieldHunter on the binary-based

protocols.

Protocol Discovered/GT [bits] Cov/AoC
C2S S2C C2S S2C

Vuze DHT 288/240 200/208 0.87/1 0.85/0.87
DNS 48/32 56/32 0.75/1 1/1
uTP 88/96 200/96 0.75/1 0.67/0.87
RTP 80/88 80/88 0.82/1 0.82/1

ED2K 128/16 16/16 1/1 1/1
KADEMLIA 352/16 104/16 1/1 1/1

STUN 256/160 184/160 0.9/0.83 0.85/0.88

SOPCAST 128/? 152/? ?/? ?/?
PPLIVE 0/? 32/? ?/? ?/?

a total of 128 bits in the C2S EDK2 collection. After manual

inspection, we observed those fields to correctly include key

hash information, Session-ID, Host-ID, etc.

2) SopCast: SopCast is a proprietary and closed protocol

used for P2P-TV broadcasting. Unveiling information about

the message format of such protocols is one of the motivations

for developing FieldHunter.

Particularly, this protocol presents a large presence in the

TR3-2007 trace. FieldHunter identifies 128 bits corresponding

to: MSG-Len, Trans-ID, Session-ID, Host-ID (we argue it is

used for NAT traversal since it uses 64 bits, 32 of which

are typically a private IP address, and 32 are identical to the

Host IP address) and some accumulators of 16, 32 and 64 bits

(possibly used to reorder video/audio chunks).

3) Domain Name Service (DNS): For DNS in the TR1-

2012 trace, FieldHunter successfully identifies the Trans-ID

and a MSG-Type fields, each of 16 bits. We expect parsing

DNS on this trace to be challenging due to the bias in

the collection: First, most of the C2S messages are “DNS

Requests” messages; Second, requests are directed to the most

popular DNS resolvers (in the TR1-2012 trace customers use

the local DNS server). Despite this, FieldHunter correctly

identifies some protocol fields.

Interestingly, in the C2S messages, FieldHunter reports the

presence of a 16 bit accumulator on top of the Trans-ID.

We manually verified that implementations of DNS clients

generate a “random” Trans-ID by using a global counter.

FieldHunter captured this particular but common behavior,

exposing more details about the protocol.

C. Evaluation on Textual Protocol

Table IV reports overall results for textual protocols as the

number of inferred fields, the number of key-value pairs (K-V)

and singletons (most of them MSG-Type) for each direction

(with the exception of the last two protocols for which the DPI

provided just one direction of the conversation). In addition,

we report those fields that we label as being identifiers (IDs),

detailing those that proved to be False Positives (FP). Here, by

IDs we refer Host-IDs and Session-IDs and Transaction-IDs.

Overall, from the 26 fields labeled as IDs, 22 are manually

verified as correct identifiers and only four are false positives.

In general, we observe that the majority of the fields of textual

TABLE IV
Summary of the results from running FieldHunter on the textual

protocols

Protocol #Fields K-V CMD IDs FP-IDs
C2S/S2C C2S/S2C C2S/S2C C2S/S2C C2S/S2C

STUN 3/3 2/2 1/1 1/1 0/0
FTP 19/18 12/17 7/1 2/1 0/0

HTTP 9/14 9/14 0/0 3/0 1/0
POP3 9/28 5/24 4/4 2/0 0/0
SMTP 19/9 15/9 5/0 1/1 0/0
MSNP 3/4 3/4 0/0 2/0 0/0
RTSP 9/25 9/18 0/7 3/6 0/2

GAME */17 */15 */2 */2 */0
RSP 3/* 2/* 1/* 1/* 0/*

protocols are successfully inferred by FieldHunter in both the

C2S and S2C directions. As for the binary protocols, we pick

two interesting textual protocols as case study.

1) Microsoft Notification Protocol (MSNP): The MSN

protocol is present in all three traces. FieldHunter correctly

finds that USR field carries a Host-ID and indeed, it carries

the MSN’s user name. Another interesting field is CVR which

is used to send specific information about the client and its

OS to the server. This field is captured by FieldHunter since

system settings are different for each MSN user, but consistent

during the communication with the server. Although CVR is

not an actual Host-ID, this is a right interpretation for the field

type because the field behaves the same as Session-ID.

2) Real-Time Streaming Protocol (RTSP): The S2C

direction of this protocol gives many inferred ID fields. Out

of these six IDs, four are correctly labeled and two are false

positives. The latter occur when some fields that are supposed

to take different values actually always take the same value

for a given conversation, behaving similar to a Session-ID.

The FP fields are Last-Modified and Cache-Control.

For instance, Last-Modified is the timestamp of the last

modification for a given content. Since one single object is

requested using multiple RTSP conversations, its modification

time appears constant across conversations on the same IP pair.

Finally, the Cache-Control tends to take always the same

value among conversations used to retrieve the same content

as well. In general, we observe that the original collection may

be biased toward some specific subset of protocol fields and

values. This is challenging for FieldHunter and, in general,

any field inference algorithm that relies on traffic data.

D. Sensitivity Analysis & Parameter Tuning

We evaluate the sensitivity of FieldHunter to different pa-

rameters and to external factors, such as the number of conver-

sations needed. As mentioned before, we perform parameter

tuning using one trace, and then we evaluate FieldHunter on

all three traces. We show next, the design proved to be robust

to parameter tuning. This is partly confirmed by the results in

Figs. 6, 4, 5, which show a clear field inference.

In our tuning, first we focus on one of the most challenging

field to infer, the MSG-Type for binary protocols. To tune

parameter, we take all collections for those protocols where we

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Max. Entropy Threshold

 0
 0.1

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

M
in

. C
or

re
la

tio
n

T
hr

es
ho

ld

 0

 0.2

 0.4

 0.6

 0.8

 1

C
ov

er
ag

e
*

A
oC

Fig. 7. Parameter sensitivity for the MSG-Type.

have the ground truth. Then for each collection, the MSG-Type

algorithm is executed manifold by tweaking the thresholds

(Min. Correlation and Max Entropy). For each threshold

pair, the product between Coverage and AoC is computed,

providing a coefficient from 0 to 1, where values close to

1 are desired. The results are reported in Fig 7. The darker

the block, the better FieldHunter performs. As observed, there

is a large range of good parameters that yield scores above

0.8, which means that in most cases FieldHunter is able to

correctly pinpoint the MSG-Type field. For other field types,

we observed qualitatively similar results and we do not show

them here due to space constraints.

We now evaluate the effect of the collection size for both

binary and textual protocols. For textual protocols, we first

select nine protocols for which we know all the fields present

in our traces. Then, we randomly extract a reduced subset of

conversations from the collections and run FieldHunter over

the subset. Results are compared against our ground truth

to compute the Coverage and AoC (Fig. 8). We see that

FieldHunter performs well even with limited number of textual

conversations. In fact, when 50 conversations are considered,

we identify 85% of all the fields, with 97% AoC. Overall,

using large enough collections, we are always successful in

identifying the Df delimiter for all the protocols we test. Most

of the mis-labeling happens due to challenges in inferring the

Dk−v for some fields.

For binary, we repeat the same experimental setup as before,

but focusing on two extreme protocol cases, DNS and Vuze

DHT. The results are shown in the bottom plot of Figure 8.

As we can see, the two protocols react differently and also

differ from textual protocols (note the different scales in the x-

axis). We believe that the heuristics apply differently on textual

and binary protocols as textual protocols are less sensitive to

diversity. Vuze DHT represents the protocol for which we have

highest diversity, with many end-points exchanging messages.

Conversely, DNS (from TR1-2012) represents a challenging

scenario due to little diversity in the collections: typically only

one MSG-Type (DNS requests) is found, and conversations are

very short (a single request/response). As we see, eventually

we achieve very good results for DNS, but it requires as many

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

C
ov

er
ag

e
&

 A
oC

Collection Size

Text Coverage
Text AoC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

C
ov

er
ag

e
&

 A
oC

Collection Size

DNS Coverage
DNS AoC

Vuze DHT Coverage
Vuze DHT AoC

Fig. 8. Coverage and AoC versus the number of conversations. text-
based protocol (top); DNS and Vuze DHT binary-based protocols (bot-
tom).

as 2,000 conversations.

V. RELATED WORK

Automatic inference of protocol formats from passively

network monitoring was first addressed by Beddoe [19]. Here

authors applied the Needleman-Wunsch algorithm for align-

ment of byte sequences between network payloads. The same

algorithm has been used in Scriptgen [20] and RolePlayer [10]

for automating the learning of protocols in honey-nets. Their

works aim to find variant and invariant segments in textual

protocols, although our aim is to identify a broader selection

of field types.

The problem of extracting message format specification for

security applications was later addressed by Discoverer [9].

They first clustered messages with similar formats together

using sequence alignments and then identified parts of the

messages that change across flows. In contrast to FieldHunter,

Discoverer has the same limitations as in [10], [19], [20],

where fields of the protocols are expected to appear in pre-

defined order. In [13] authors propose Prodecoder that uses

semantic information for field extraction, by using the LDA

model. Their approach looks promising on identifying keys

and the syntax of textual protocols, but it is not clear how LDA

can properly merge n-grams into fields of binary protocols.

In [8], [11], [12], [14], [21] authors derive automatically

protocol signatures purely from network traces. In PEXT [11]

and ReveX [8] signatures are extracted for protocols using

similar tokens to cluster flows. Differently [21] uses seman-

tic information found in the protocol to group messages

with similar formats. Authors in [14] propose a system that

automatically can produce signature for botnets’ command

and control traffic. This is an interesting application since

command and control traffic is obscured and undocumented

by default. Besides our work does not aim to obtain signatures

for network protocols, FieldHunter can help considerably

with such applications as mentioned in [14] future works.

Automatically generated signatures can be good for classi-

fying traffic, but understanding the mechanics and semantic

of the protocol is valuable complimentary information for a

system expert to verify the quality of the signatures. Indeed,

preliminary experiments on decrypted Ranmit traffic shows

that FieldHunter is able to identify some binary fields of its

Command and Control protocol header.

Other authors have tackled the problem of protocol reverse

engineering by using binary execution analysis. For instance

Prospex [7] is a system that analyzes both binary execu-

tion traces combined with network traffic. Binary analysis

requires an instrumented system with enough privileges to read

protected memory of the application that uses the protocol.

Similar in spirit, in Dispatcher [22] the authors focused on

protocol reverse-engineering for botnet infiltration. All the

above works rely on binary analysis and they are therefore

very different from what we want to achieve with FieldHunter

where we only have passive access to network traffic.

Our technique is complimentary to other systems that aim

to extract message format and syntax at the time that our goal

is to identify containers/fields of information, and as such it

can potentially improve their results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented FieldHunter, a system that auto-

matically infers protocol field types from passive observation

of network traffic. We showed that FieldHunter is able to

provide a comprehensive set of fields and their types for both

textual and binary protocols that may not have a publicly

available specification. Therefore, we believe that a system

such as FieldHunter can significantly improve the effectiveness

of modern network security tools.

As future work we want to extend FieldHunter to infer fields

from not well documented protocols of mobile applications.

Such knowledge can be used to create fine grained policy

engines to block specific events like uploads or downloads,

in enterprise networks where users bring their own devices

and connect to Internet.

ACKNOWLEDGMENTS

We acknowledge the help of Lorenzo De Carli, who pro-

vided us unencrypted samples of Ramnit command and control

traffic extracted from one of our datasets. Without his help

we could not prove how useful is FieldHunter on identifying

automatically fields for this very specific kind of applications

such as malware.

REFERENCES

[1] Checkpoint Application Intelligence.
http://www.checkpoint.com/products/technologies/ai.html.

[2] Z. Li, G. Xia, H. Gao, Y. Gao, Y. Chen, B. Chen, J. Jiang, and Y. Lv.
NetShield: Massive Semantics-based Vulnerability Signature Matching
for High-speed Networks. In ACM SIGCOMM, 2010.

[3] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
Extraction of Protocol Message Format using Dynamic Binary Analysis.
In ACM Conference on Computer and Communications Security, 2007.

[4] P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex:
Protocol Specification Extraction. In IEEE Security and Privacy, 2009.

[5] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Irun-Briz. Tupni:
Automatic Reverese Engineering of Input Formats. In ACM Conference

on Computer and Communications Security, 2008.
[6] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol Format

Reverse Engineering through Context-Aware Monitored Execution. In
Symposium on Network and Distributed System Security, 2008.

[7] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, and
Engin Kirda. Automatic network protocol analysis. In 15th Symposium

on Network and Distributed System Security (NDSS), NDSS ’08, San
Diego, CA, 2008. ISOC.

[8] Joao Antunes, Nuno Neves, and Paulo Verissimo. Reverse engineering
of protocols from network traces. In Reverse Engineering (WCRE), 2011

18th Working Conference on, WCRE ’11, pages 169–178, Limerick, IR,
2011. IEEE.

[9] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. Discoverer:
Automatic protocol reverse engineering from network trace. In Pro-

ceedings of 16th USENIX Security Symposium on USENIX Security

Symposium, USENIX Security ’07, pages 1–14, Boston, MA, 2007.
USENIX Association.

[10] Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H Katz.
Protocol-independent adaptive replay of application dialog. In Pro-

ceedings of the 13th Annual Network and Distributed System Security

Symposium (NDSS), NDSS ’06, San Diego, CA, 2006. ISOC.
[11] Maxim Shevertalov and Spiros Mancoridis. A reverse engineering

tool for extracting protocols of networked applications. In Reverse

Engineering, 2007. WCRE 2007. 14th Working Conference on, WCRE
’07, pages 229–238, Vancouver, BC, CA, 2007. IEEE.

[12] A. Tongaonkar, R. Keralapura, and A. Nucci. SANTaClass: A Self
Adaptive Network Traffic Classification System. In TC6/IFIP Network-

ing, 2013.
[13] Yipeng Wang, M. Zubair Shafiq, Liyan Wang, Alex X. Liu, Zhibin

Zhang, Danfeng Yao, Yongzheng Zhang, and Li Guo. A semantics
aware approach to automated reverse engineering unknown protocols.
2012 20th IEEE International Conference on Network Protocols (ICNP),
pages 1–10, October 2012.

[14] Christian Rossow and Christian J. Dietrich. Provex: Detecting botnets
with encrypted command and control channels. In Proceedings of the

10th International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, DIMVA’13, pages 21–40, Berlin, Heidel-
berg, 2013. Springer-Verlag.

[15] Christian Kreibich and Jon Crowcroft. Honeycomb: creating intrusion
detection signatures using honeypots. ACM SIGCOMM Computer

Communication, 34(1), 2004.
[16] A. Tongaonkar, R. Torres, M. Iliofotou, R. Keralapura, and A. Nucci.

Towards self adaptive network traffic classification. Elsevier’s Commuter

Communications Journal, April 2014.
[17] YY Yao. Information-theoretic measures for knowledge discovery and

data mining. In Entropy Measures, Maximum Entropy Principle and

Emerging Applications. Springer, 2003.
[18] Vuze Wiki. Distributed hash table, October 2012.
[19] Marshall A Beddoe. Network protocol analysis using bioinformatics

algorithms. Technical report, Baseline research, 2005.
[20] C. Leita, K. Mermoud, and M Dacier. Scriptgen: an automated

script generation tool for honeyd. In Computer Security Applications

Conference, 21st Annual, CSAC ’05, pages 214–226, Tucson, AZ, 2005.
IEEE.

[21] Vinod Yegneswaran, Jonathon T Giffin, Paul Barford, and Somesh Jha.
An architecture for generating semantics-aware signatures. In USENIX

Security, pages 34–43, 2005.
[22] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn

Song. Dispatcher: Enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the 16th ACM confer-

ence on Computer and communications security, CCS ’09, pages 621–
634, Chicago, IL, 2009. ACM.

