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Abstract—The Named Data Networking (NDN) and Content-
Centric Networking (CCN) architectures advocate Interest aggre-
gation as a means to reduce end-to-end latency and bandwidth
consumption. To enable these benefits, Interest aggregation must
be realized through Pending Interest Tables (PIT) that grow in
size at the rate of incoming Interests to an extent that may
eventually defeat their original purpose. A thorough analysis is
provided of the Interest aggregation mechanism using mathe-
matical arguments backed by extensive discrete-event simulation
results. We present a simple yet accurate analytical framework
for characterizing Interest aggregation in a CCN router, and
use our model to develop an iterative algorithm to analyze the
benefits of Interest aggregation in a network of interconnected
routers. Our findings reveal that, under realistic assumptions,
an insignificant fraction of Interests in the system benefit from
aggregation, compromising the effectiveness of using PITs as an
integral component of Content-Centric Networks.

I. INTRODUCTION

The fact that the content and not its location is what matters
to end-users has given rise to many recent proposals classified
under the generic name of Information-Centric Networking
(ICN) [1]. Many ICN blueprints can be seen as Interest-
driven communication models, where users ask for content by
name through Interest packets. The most prominent examples
of Interest-driven ICN (NDN [2] and CCNx [3]) are based
on three main components. Routers maintain Forwarding
Information Bases (FIB) listing routes to name prefixes, which
enable routing to names rather than addresses. Given that
all copies of the same content are equivalent, routers cache
content opportunistically in their local Content Store (CS). In
addition, each router maintains a Pending Interest Table (PIT)
to suppress unnecessary Interests.

When a router receives an Interest that cannot be satisfied
through its local CS, it creates a PIT entry and forwards
the Interest if there is no entry for the same content name
in its PIT. If a PIT entry already exists for the content
name, the Interest is aggregated at the router and is not
forwarded. The idea of Interest aggregation is hardly new. It
has been implemented in Web caching architectures in the
past, e.g., Squid [4]—where it was referred to as collapsed
forwarding—and commercially used on production content
delivery networks since the early days of the Web.

The expectation of Interest aggregation in ICN architectures
has been that network and server loads can be drastically
reduced by suppressing similar Interests, and that end-to-
end latencies can be reduced by integrating caching with

Interest aggregation. These benefits, however, come at a non-
trivial cost. Creating and maintaining the PIT is expensive,
especially when performed at Internet scale. The routers used
in the Internet backbone handle hundreds of thousands of
packets every second. The proposed data structure must be
fast enough when operating at its peak capacity to not act as a
source of latency and overhead itself. Thus, considerable work
has focused on optimization and scalability of the PIT (e.g.,
see [5]–[8]).

We are not aware of any comprehensive analytical work
characterizing the expected benefits of Interest aggregation.
Some experimental efforts [9], [10] have been made in under-
standing the dynamics of the PIT size; however, important
questions such as what fraction of Interests are subject to
aggregation under realistic conditions and whether or not that
justifies the use of PITs have remained unanswered to this date.

To answer these questions, Section II presents a simple yet
powerful analytical toolbox for characterizing a CCN router
with a CS and a PIT. We compute the cache hit probability at
the CS, the Interest aggregation probability at the PIT, as well
as the router response time at an object-level granularity. Sec-
tion III uses these constructions for the analysis of a network
of interconnected content routers. Through extensive event-
driven simulations, Section IV demonstrates how accurately
our proposed framework can predict the steady-state behavior
of such a complex system. Furthermore, it shows how the
model can be used to study the performance of a large network
under realistic conditions, such as that of today’s Internet, for
which event-driven simulations are prohibitive.

Numerical evaluations of our model for large-scale systems
reveal that only a small fraction of Interests may actually
benefit from Interest aggregation in realistic settings. These
benefits are highly dependent on the amount of caching budget
available to the network. For example, a 5% cumulative
aggregation percentage can be achieved using a per-node
caching capacity of equal to 0.05% of the total number of
objects in the system, while increasing the budget to just
0.5% reduces the aggregation percentage to below 1%. Even
worse, our findings show that most Interest aggregation takes
place closer to where the content is permanently stored—i.e.,
near the producers deep in the core of the network—where
aggregating Interests hardly makes sense anymore.

The insights from our modeling results lead to the necessary
conclusion that Interest aggregation should not be an integral
component of future ICN architectures and Content-Centric
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Networks. On-path caching or edge caching provide all the
benefits of reducing the number of Interests that request similar
content, without the costs of maintaining PITs. In turn, if
per-Interest forwarding state is not needed for other reasons,
this realization makes Content-Centric Networking at Internet
scale more feasible than the current NDN design, given that
forwarding data structures (e.g., CCN-DART [11], [12] and
CCN-GRAM [13]) smaller and more efficient than PIT could
be used for routing data back to the consumers.

II. CCN ROUTER WITH NON-ZERO DOWNLOAD DELAYS

We develop a mathematical model to characterize a CCN
router with a Content Store (CS) to enable caching function-
ality and a Pending Interest Table (PIT) that allows Interest
aggregation. Unlike previous work [14]–[17], we assume that
the content download delays are non-zero. Our derivations,
hence, can be regarded as an extension to a highly accurate
approximation of LRU cache introduced by Che et al. [15].

Consider a content router with a CS of capacity C imple-
menting LRU replacement policy receiving Interests indexed
(without loss of generality) in their decreasing order of pop-
ularity from 1 to N . In the rest of this paper, the terms
CS and cache refer to the same concept and we shall use
them interchangeably. Assume that Interests conform to the
Independent Reference Model (IRM), i.e., for every object,
Interests inter-arrival times to the router are independent, iden-
tically distributed (i.i.d.) random variables. Fig. 1 illustrates
Interests (shown as combs) as arriving at a content router
over time. We focus on the Interests for an object i, which
are highlighted in color. In Fig. 1, the red and green zones
respectively specify time intervals when object i is absent
or present in the CS. Upon receiving an Interest, if the CS
contains a copy of object i, a cache hit occurs (see green
combs); the Interest is immediately satisfied and a copy of
that object is sent back to the requester. Otherwise, we say a
cache miss occurs (see red combs).

t0 t1 time
di

T

Interest inter-
forwarding time

· · ·

Fig. 1: Interests arriving at a content router over time

Let t0 be the instant when the first cache miss for object
i occurs at the CS. At that point, the content router creates a
PIT entry for that object and forwards the Interest to another
router/source (forwarded Interests shown as solid red combs).
Let di be the random variable indicating the duration till a
copy of the requested object is downloaded and stored in the
CS, and mark that instant as t1 = t0 +di. We shall refer to di
as the download delay of object i. Any subsequent Interest for
object i during the interval (t0, t1) is aggregated at the content
router due to the existence of a PIT entry under object i’s name
(aggregated Interests shown as dotted red combs).

A set of events take place at time t1, namely the content
router: (1) stores a copy of object i in the local CS; (2) removes
the PIT entry for the corresponding Interest, and (3) forwards
a copy of object i on all interfaces from which a request for
it had been received. A copy of object i remains in the CS
so long as the inter-arrival time of consecutive Interests for
object i is smaller than T denoting the characteristic time
of the cache introduced by Che et al. [15] (see Fig. 1). In
essence, T is a random variable signifying the duration it takes
until C distinct objects other than i are downloaded into the
cache and object i is dismissed. For relatively large C and N
and when the content download delays into the cache are zero,
Fricker et al. [18] proved that T becomes deterministic. Later
Dehghan et al. [19] proved this right even when download
delays are non-zero.

The characteristic time T depends on the cache capacity C,
the Interests arrival rate and the object popularity distribution
and is computed according to

E

[
N∑
i=1

Xi

]
= C , (1)

where Xi is the Bernoulli random variable indicating whether
object i is present in the cache or not. Eq. (1) comes from
the fact that the cache has the capacity for C objects. Note
that E[Xi] equals the probability of object i being present
in the cache, i.e., the cache occupancy probability. With
Poisson arrivals and thanks to the PASTA property, the cache
occupancy probability equals the cache hit probability for any
object i. Hence, we arrive at

N∑
i=1

hi = C . (2)

where hi denotes the cache hit probability of object i. We
shall later use (2) as a constraint in computing the cache hit
probability of individual objects.

A. Computing the Cache Hit Probability

Under the assumption that request inter-arrival times are in-
dependent exponential random variables, for a particular object
i, the p.m.f. of exactly ni = k cache hits is the probability
of the event that the first k Interest inter-arrival times are
smaller than T , while the following Interest inter-arrival time
is greater than T . This probability can be formalized by the
geometric distribution P (ni = k) =

(
1−e−λiT

)k
e−λiT , and

the expected number of cache hits is derived as

E[ni] =

∞∑
k=0

kP (ni = k) = eλiT − 1 .

After forwarding a missed request for object i, if E[di] denotes
the expected time to download a copy of i into the CS, the
expected number of missed requests during this interval would
be E[n̄i] = 1+λiE[di], of which one Interest is forwarded and
the remaining λiE[di] are aggregated at the PIT. The expected
total number of Interests received for object i during one
such inter-forwarding cycle is then E[Ni] = E[ni] + E[n̄i].



Consequently, the probability of a cache hit for object i is
derived as

hi =
E[ni]

E[Ni]
=

eλiT − 1

λiE[di] + eλiT
. (3)

Eq. (3) can be regarded as an extension to the LRU approx-
imation of Che et al. [15] where download delays can be
non-zero. In fact, setting download delays to zero simplifies
Eq. (3) to their renown form of hi = 1− exp(−λiT ).

B. Computing the Interest Aggregation Probability

We now turn to computing the probability of Interest
aggregation at the PIT. From our previous discussion, the
expected number of aggregated requests during the download
interval E[di] are E[n̄i] − 1 = λiE[di]. The probability of an
Interest for object i being aggregated at the PIT is subsequently
derived as

ai =
E[n̄i]− 1

E[Ni]
=

λiE[di]

λiE[di] + eλiT
. (4)

Put differently, Eq. (4) states what fraction of Interests for
object i arriving at the content router are aggregated in the
long run.

C. Computing the Router Response Time

Another important measure in the analysis of interconnected
routers when the download delays are non-zero is the router
response time. Due to the potential existence of a PIT entry
in the content router when an Interest for object i is received,
the time it takes the router to satisfy that Interest can be any
value from interval (0, di].

We define the pending time of an Interest in the PIT as the
time difference between the arrival of the Interest to the router
and the subsequent moment when the Interest is served. With
Poisson arrivals, Interest arrival times are uniformly distributed
over (0, di]; hence, the sum Wi of pending time of Interests
during a download interval di can be formulated as

Wi = di + λi

∫ di

0

(di − t) dt = di(1 + 0.5λidi) .

We define the response time ri of the content router for a
particular object i as the expected pending time of Interests
for that object which is readily derived as

ri =
E[Wi]

E[Ni]
=

E[di(1 + 0.5λidi)]

λiE[di] + eλiT
. (5)

The router response time depends on the distribution of
download delays, though knowledge of only the first two
moments is sufficient.

III. AN ALGORITHM FOR THE ANALYSIS OF
HIERARCHICAL CCN NETWORKS

We investigate how an interconnected network of CCN
routers can be analyzed using the results from the previous
section. Consider a hierarchy of routers as depicted in Fig. 2.
Consumers are located at the bottom level where their requests
for objects of interest are directed to the first level CCN routers

(i.e., `1 routers). An `1 router searches its local CS for a copy
of the requested object and if failed, it forwards the request to
the next level router (i.e., the parent `2 router). This process
is repeated on every cache miss and in the worst case, the
requested object is downloaded directly from the producer at
the top of the hierarchy storing permanent copies of all the
objects in the system. On the reverse path back to the original
requester, a copy of the object is stored in the CS of every
CCN router it passes through.

For simplicity, we consider only a single producer in the
network. The producer in our model can alternatively be
conceived as a collection of several producers at the core
of the network collapsed into one single entity. This single-
source spanning-tree simplification of the network topology is
standard in many studies of content delivery [20] and publish-
subscribe networks [21].

There are two important challenges in the analysis of the
foregoing structure. First, the Interest stream into a higher-
level router (i.e., all except `1 routers) is no longer a simple
Poisson process, but an aggregate of miss streams from a
number of lower-level routers. It is known, however, that the
superposition of multiple streams tends toward Poisson as
the load increases [22], [23]. We shall use this insight when
extending the results of the previous section to the analysis of
CCN networks by primarily focusing on trees of higher arity.

Secondly, chaining routers may cause circular dependencies
in the computation of some router performance metrics. For
instance, the cache hit probability in an `1 router depends on
the download delay of the objects as mandated by Eq. (3).
That delay is determined by the response time of the parent
`2 router which in turn is a function of its input rate. The input
into an `2 router itself partially relies on the miss stream of
its descendant `1 router, and that is how a dependency cycle
is formed. To overcome this hurdle, we present an iterative
approach as outlined in Algorithm 1.

Procedure ANALYZE-CCN-TREE is proposed to compute
the important router performance metrics we discussed in
Section II for a hierarchical network structure such as the
one portrayed in Fig. 2. The procedure analyzes a complete
k-ary tree of height L + 2 in which consumers are at level
0; L layers of CCN routers are employed in the middle,
and the producer is located at level L + 1 as the root of
the tree. The available caching budget is provided by vector

. . . . . . . . .

· · · · · ·

· · · · · ·

...

· · · · · ·

· · ·
...

· · ·

consumers

`1 routers

`2 routers

`L−1 routers

`L routers

producer

Fig. 2: A partial view of a hierarchy of interconnected routers



Algorithm 1 Method to characterize a hierarchical CCN
represented by a complete tree as depicted in Fig. 2
Input: k: arity of the tree; L: number of tree levels; λ: consumer input rate

to each first level router; δ: round-trip delay across each link; C: vector
of caching budget per node per layer; q: probability vector reflecting the
object popularity profile.

Output: T : characteristic time of caches at each level; h: vector of cache
hit probabilities at each level; a: vector of aggregation probabilities at
each level; r: vector of router response times at each level; m: vector of
incoming Interest rates to each level.

1 procedure ANALYZE-CCN-TREE(k, L, λ, δ,C, q)
2 i← 0

3 for ` from 1 to L do
4 r

(i)
`+1 ← δ × (L− `)

5 end for
6 while not converged do
7 i← i+ 1

8 for ` from 1 to L do
9 d

(i)
` ← δ + r

(i−1)
`+1

10 end for
11 m

(i)
1 ← λ× q

12 for ` from 1 to L do
13 T

(i)
` ← CHAR-TIME(m(i)

` , d(i)
` , C`)

14 h
(i)
` ← HIT-PROB(m(i)

` , d(i)
` , T (i)

` )

15 a
(i)
` ← AGG-PROB(m(i)

` , d(i)
` , T (i)

` )

16 r
(i)
` ← RESP-TIME(m(i)

` , d(i)
` , T (i)

` )

17 m
(i)
`+1← MISS-RATE(k, m(i)

` , h(i)
` , a(i)

` )
18 end for
19 end while
20 end procedure

C in which element C` indicates the allocated CS capacity
for each of the routers at level `. The initial rate at which
Interests are produced by the consumers and fed into each
`1 router is λ. The object popularity profile follows a Zipfian
distribution as determined by the probability vector q. Without
loss of generality, in this paper we always rank objects in
their decreasing order of popularity. As such, the normalized
popularity of the nth ranked object is determined by the power-
law q(n) = n−α/

∑N
u=1 u

−α , where exponent α > 0 is the
parameter to the Zipf distribution. Finally, each link induces
a round-trip delay of δ for transporting an individual content
object. These parameters are inputs to Algorithm 1.

As pointed out, Algorithm 1 works in iterations to tackle
circular dependencies. The superscript (i) used throughout the
algorithm denotes the latest count of iterations. At the 0th

iteration, i.e., the initial phase, since all caches are empty and
all requests are fulfilled directly by the producer, the router
response times (denoted by r) are simply set based on the hop-
distance of routers from the root (lines 3–5). The notation r

(i)
`+1

describes the response time of a (`+1)th level router computed
at the ith iteration. Note that variables denoted in bold face are
in fact vectors with values corresponding to individual objects
in the system as ordered in popularity profile q. Next, at any
subsequent iteration:

1) Download delays for all levels are updated (lines 8–10)
according to the heuristic that the delay for downloading

files into the CS of an arbitrary router is equal to the
response time of its parent router plus the round-trip
delay of the link connecting them together. Assuming all
objects are unit-sized, we can deduce that the average
link delays are the same. In a hierarchical structure, thus,
we can compute the download delays into a particular
router by knowing the average link delays and the
response time of the next level (i.e., parent) router.

2) All performance measures discussed in Section II are
computed/updated across all tree levels (lines 12–18).

Starting from the bottom working towards the top, at each
tree level the measures are computed in the following order:

a) Procedure CHAR-TIME: is called at line 13 to com-
pute the cache characteristic times by solving the following
fixed-point equation for variable T :

N∑
j=1

em[j]T − 1

m[j]d[j] + em[j]T
= C , (6)

where m[j] and d[j] are the jth elements in vectors m and
d, respectively denoting the input rate and download delay
for object j at the corresponding router. Note that Eq. (6) is
indeed the expanded form of (2) using (3).

b) Procedures HIT-PROB, AGG-PROB and RESP-TIME:
are called at lines 14–16 to use the above computed character-
istic time for computing the cache hit probability, PIT aggre-
gation probability and response time of routers for individual
objects according to Eqs. (3), (4) and (5), respectively.

c) Procedure MISS-RATE: is called at line 17 to com-
pute the aggregate miss rate into the next level (i.e., parent)
router using the above computed hit- and aggregation proba-
bilities according to the following relation:

m`+1 = k ·m` � (1− h`)� (1− a`) , (7)

where � signifies component-wise multiplication of corre-
sponding vectors. In essence, Eq. (7) suggests that the input
stream of a router at level-(`+1) is the superposition of k miss
streams from its descendant level-` routers. The only exception
are `1 routers whose input is directly provided by consumers
according to line 11.

AGG-PROBHIT-PROB RESP-TIME

MISS-RATE DELAY

CHAR-TIME

START

In
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consumer
input rate

end-to-end
delay

Fig. 3: Dependency among procedure calls in Algorithm 1.

To better understand the dependency between these proce-
dure calls, the diagram in Fig. 3 provides a pictorial view



of their relationship. At the beginning, consumers’ input rate
and the end-to-end delay (between the consumers and the
producer) are used to compute the cache characteristic time
for all `1 routers. Cache hit- and PIT aggregation probabilities
as well as router response times are then computed for `1
routers. Next these results are used to calculate the input rate
and download delays for `2 routers. Then level 2 becomes
the current level and a similar procedure is repeated for all
remaining levels from the bottom to the top of the tree.

The computations in the middle and bottom boxes in Fig. 3
may be repeated in consecutive iterations as needed; the results
from one iteration will be used in computing the next as the
computed measures gradually converge to their steady-state
values. In our numerical simulations—to be discussed next—
we noticed that the first few iterations usually suffice to get an
accuracy of better than 0.1% while no more than 10 iterations
were needed in all cases studied (irrespective of the input size).

Implementing Algorithm 1 is straightforward in many off-
the-shelf numerical computing environments. In our simula-
tions, for solving Eq. (6), we leveraged fsolve function from
MATLAB’s Optimization Toolbox which uses trust-region
methods [24] for solving systems of nonlinear equations. It is
known [25] that trust-region methods take O(ε−2) iterations to
drive the norm of the gradient of the objective function below
desired threshold ε. The time-complexity of Algorithm 1 is
hence O(NLε−2).

IV. PERFORMANCE EVALUATION

We present simulation results to show how the proposed
method can be used to accurately predict the complex behavior
of a network of content routers. First, a detailed comparison of
the numerical results of the presented model versus the results
from extensive event-driven simulations in ndnSIM [26] is
presented. Next, the results from our model are used to analyze
more complex scenarios, such as networks with larger content
base, which are far more cumbersome and time-consuming to
study using conventional event-driven simulations.

We focus on two major strategies of cache allocation,
namely uniform caching and edge caching. In the former, a
fixed caching budget is evenly distributed across all content
routers, whereas with the latter, the budget is entirely allocated
to the routers at the edge of the network, i.e., the ones
directly serving the consumers. With edge caching, the upper
level routers simply act as routers with no caching capability
(that is, their CS size is set to zero). Yet they still perform
Interest aggregation upon receiving Interests for which they
have pending entries in their PITs.

A. Comparison of Model with Event-driven Simulations

We consider a tree of degree k = 10 and height H = 5
as the underlying topology, where L = 3 levels of content
routers are used in the middle. The reason for using such a
configuration is to keep the overall aggregate traffic pattern
in the middle layers as close to being Poisson as possible,
as discussed in Section III. Although the model was able
to capture the overall trends in our experiments with trees

of lower arity, we noticed that more accurate results are
generally obtained when nodes have higher fan-in (e.g., 10 or
more). This assumption, however, is not unrealistic as some
studies [27] of the actual Internet router-level topology have
reported an average degree of more than 22 per router.

For the first set of experiments, we begin with a fairly
small content catalog comprising only 100 objects. The reason
for this choice is as follows. When performing event-driven
simulations with a large content base, the system takes much
longer to come to a steady-state; while growing worse with
an increasing caching budget. In such case, a large number of
requests must be used just to “warm-up” the system—hence,
not to be used for collecting statistics—from the initial state
where all caches are empty. Besides, because of the Zipfian
nature of object popularity, a larger number of requests must
be generated in total to ensure that objects at the long tail of
the distribution also get a reasonable chance to appear in the
generated request stream. Even with a content catalog of size
100 objects with a Zipf parameter of 1, we had to generate
roughly 4 million requests—while disregarding the first half—
to make sure all caches in all levels have their capacity almost
fully utilized before collecting statistics.

For the foregoing set-up, in Fig. 4 we compare the ag-
gregation probability for individual objects as predicted by
model versus the results from extensive event-driven simu-
lations. Curves in each plot represent the PIT aggregation
probability as attained by each of the content routers at the
corresponding level. Thanks to the symmetry of the topology,
all routers at the same level share similar statistics. Graphs in
the top row contrast uniform caching against edge caching
employed for graphs at the bottom. In each row, the total
caching budget (CB) increases from left to right. The model
accurately predicts aggregation across various caching levels
even at a fine object-scale resolution. Edge caching results in
higher aggregation probability at higher levels. This behavior
is expected because with edge caching naturally no cache
hit may occur at higher levels in the tree. Therefore, many
requests that would have hit those caches if a non-zero cache
size were used will now end up being aggregated at PITs.

To obtain a more insightful view of Interest aggregation,
graphs in Fig. 5 show the odds of a generic Interest (irre-
spective of the object popularity rank) getting aggregated at
each level of the tree when the link delay gradually increases.
It is clear that at a fixed Interest rate, an increased link de-
lay generally improves the aggregation probability. However,
larger cache sizes tend to offset some of these improvements,
especially with uniform caching strategy.

Interest aggregation occurs at a higher probability at upper
levels of the tree. This can be attributed to the higher input
rate into those levels considering the fact that the aggregate
miss stream from many lower level routers constitutes the
input of their parent router. Results from Fig. 6 suggest
that significant benefits are likely to accrue from Interest
aggregation; however, this promising gain should be taken with
a grain of salt due to the reasons discussed in the following.

First, the small object catalog consisting of only 100 objects
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Fig. 4: A comparison of model versus event-driven simulations. Input rate into each edge router is 100 Interests/sec. Model predicts aggregation
probability for individual objects fairly accurately across all levels of the tree topology.

naturally gives rise to a higher frequency of similar Inter-
ests arriving at the router, thereby an increased aggregation
probability. Despite the event-driven simulation which turns
out to be extremely tedious especially for a large number
of objects, numerical simulations using the proposed model
are practicable even on commodity hardware. Our numerical
results in the next subsection confirm that the actual benefits
of Interest aggregation are indeed much less in reality.

Secondly, the notion of aggregation probability itself may
give a magnified image of the real benefits. In fact, aggregation
probability at a certain level in the hierarchy indicates what
fraction of Interests making it up to that level end up getting
aggregated. Since the request stream observed by the higher
level routers is a “filtered” version of the input stream to their
descendants, it is clear that fewer Interests are received in
total towards the top of the hierarchy. For this, we define a
new measure called aggregation percentage that determines
the percentage ratio of the count of aggregated Interests at a
certain level (or at a particular router) over the total count of
produced Interests in the whole system. Since every generated
Interest can be aggregated at most once on its path towards the
producer, aggregation percentage provides a more reasonable
and unbiased measure, and we shall use that in our later
assessments of aggregation benefits.

Given the foregoing remarks, we emphasize that the results
demonstrated in Figs. 4 and 5 are particularly meant to verify
the accuracy of the proposed analytical framework, and to
provide a side-by-side comparison of how varying different
parameters affects the relative odds of Interest aggregation.
The true benefits of Interest aggregation are discussed in the

following subsection, where more realistic input parameters
are used.

B. Numerical Evaluations

Fig. 6 sheds light on the combined impact of download
delay and input rate on the Interest aggregation probability.
The symmetry of plots in Fig. 6 suggests that it is in fact the
combination of the link delay and input rate which regulates
the overall trend of aggregation probability. In fact, doubling
the input rate for a fixed link delay has the same effect on
the aggregation probability as keeping the input rate fixed and
doubling the link delay. Therefore, we define system load as
the product of these two quantities to build our next set of
experiments on it. As a combined metric, system load does not
identify a specific delay or input rate, rather defines an infinite
range for these parameters. For example, a system load of 10
may imply an input rate of 100 Interests/sec with link delay of
0.1 seconds, or equivalently, an input rate of 500 Interests/sec
with link delay of 0.02 seconds.

In the experiments to be discussed next, we consider the

TABLE I: Table of default parameter values

Parameter Symbol Value
Tree height H 5
Number of cache layers L 3
Node degree k 10
Total number of objects N 140 million
Cache capacity per cache node C 100,000 objects
Zipf exponent α 0.8
Input rate into each edge cache λ 100,000/sec
Link delay each way d 15 milliseconds
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Fig. 5: Interest aggregation probability at various router levels as a function of link delay for increasing cache sizes (left to right) and different
cache allocation strategies (top vs bottom rows). Input rate into each edge router is 100 Interests/sec.
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Fig. 6: The combined impact of link delay and input rate on aggregation probability. Increasing one factor has exactly the same effect on
Interest aggregation as increasing the other.

same tree topology as in the previous subsection, with the
general configurations listed in Table I (unless otherwise
stated). The total number of objects considered, i.e., 140
million, is an estimation of the total number of videos on
YouTube in 2008 [28] and the Zipf parameter of 0.8 is taken
from empirical studies [29], [30] of real content networks.
The input rate of 100,000 Interests/sec and link delay of 15
milliseconds are also chosen such that the average generated
traffic in the network is comparable with the load experienced
by the Internet’s backbone routers [31], [32].

Fig. 7 shows the probability of Interest aggregation at each
tree level as a function of system load. Contrary to the results
in Fig. 5, a side-by-side comparison of uniform- vs. edge-
caching reveals that when the object catalog is large, there is

no remarkable difference between these two cache allocation
strategies. It is interesting that even with the highest system
load of 3000, the maximum aggregation probability observed
at the top most level is around 0.06. This almost 12-fold
degradation compared to the previous results highlights the
importance of the size of the object catalog in the overall
odds of Interest aggregation. This rather surprising finding can
be explained as follows. With the Zipf popularity distribution
of objects, a highly popular object is requested frequently.
Therefore, once such an object is downloaded into the CS,
due to the frequent references to it, it stays there for a long
time. Hence, Interests for that object mostly result in cache
hits and are rarely aggregated. On the other hand, Interests
for an unpopular object (in the long tail of the distribution)
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Fig. 8: Impact of system load on cumulative aggregation percentage.

are received so sporadically over time that the odds of them co-
occurring in the short time span when the router is awaiting
the content are almost nil. As a result, in practice, Interest
aggregation occurs only for a small fraction of Interests.

To make this argument even stronger, Fig. 8 shows the
cumulative percentage of aggregated Interests in the system
against an increasing system load. Evidently, the overall per-
centage of Interests being aggregated is less than 5% under a
low to moderate load, and around 7% under heavy load. Note
that for these results each cache node has capacity to store
only 0.07% of the entire object catalog.

Increasing cache size further shrinks the benefit margin by
improving the overall cache hit rates. As Fig. 9 suggests, with
a small cache capacity, sizable gain (around 15% total) can
be attained through Interest aggregation. However, this gain
drastically decays as cache size per node increases. Eventually,
with a cache size of 500,000 per node (i.e., < 0.4% of the size
of the content base), there is virtually no benefit in Interest
aggregation. A secondary observation from the results in Fig. 9
is that with smaller cache size, all layers in the hierarchy
contribute about the same in aggregation percentage; however,
as more cache is added to the nodes, most Interest aggregations
occur at the upper layers, while aggregation percentage at the
edge approaches zero more rapidly.

Finally, Fig. 10 captures the impact of the object popularity
distribution on the cumulative percentage of aggregated Inter-
ests. The non-monotonic trend of curves in Fig. 10 exhibits a
diminishing returns type of effect. To explain this behavior,
we note that with a Zipf popularity distribution, objects
can heuristically be categorized into two groups, namely, an
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unpopular majority and a popular minority. The Zipf parameter
(α) controls the relative size of each group as well as the
skewness of the distribution. In fact, the larger the Zipf
parameter, the smaller the proportion of the minority group,
and the greater their popularity intensity. The latter signifies a
higher access frequency to the objects in the popular group
as α increases, hence a higher aggregation rate for them.
However, as α increases and the proportion of the popular
objects shrinks, the higher access frequency also results in
higher hit rates, because a lot of those objects eventually find
their way into the caches; therefore, subsequent requests for
them no longer get aggregated. On the other hand, thanks
to their diminishing popularity, the Interests for the majority
group are also becoming so sparsely dispersed that the odds of
finding a relevant entry for them at the PIT becomes negligible.
For this, only a small fraction of Interests representing those
fairly popular objects which may not have found a free spot
in (limited-size) caches remain subject to aggregation. Further
increasing the Zipf parameter shrinks down the size of the
popular group gradually such that at some point, every one of
them finds a permanent place in all caches. Thenceforth, the
probability of aggregation becomes effectively zero.

From another viewpoint, Fig. 10 also provides suggestive
evidence that even under a non-stationary content popularity
distribution, no remarkable benefit can be anticipated from
Interest aggregation. For example, when object references are
temporally localized, a data object becomes highly popular
over a certain duration of time, while its popularity gradually
vanishes over time as some other data object becomes popular.
In that case, if the objects popularity is measured within



smaller discrete time windows, each piece can independently
be approximated with a Zipf distribution with a possibly
different parameter. As Fig. 10 suggests, irrespective of how
different the popularity profile looks like, only an insignificant
number of Interests may be aggregated at various intervals;
hence, the benefits of Interest aggregation would still remain
minimal, with the maximum aggregation of less than 5%
taking place around a Zipf parameter of 0.9.

V. FINAL REMARKS AND CONCLUSIONS

We presented the first analytical treatment of Interest ag-
gregation in Content-Centric Networks using a simple yet
accurate model where content download delays into the routers
are non-zero. Based on our model, we introduced an iterative
algorithm for analyzing a hierarchical network of content
routers in terms of CS hit- and PIT aggregation probabilities
and router response times. This method enables the evaluation
of large-scale hierarchical caching structures, such as that
of an ICN at Internet scale, with high accuracy and low
computational cost for which discrete-event simulations are
entirely impractical due to high processing and time demands.

Our numerical evaluations of a network of caches under
realistic assumptions revealed that: (1) even with very small
caching budgets, less than 5% of total Interests on average are
subject to aggregation; (2) increasing caching budgets rapidly
diminishes the benefits of Interest aggregation; (3) most ag-
gregations take place closer to the producers, negating the
expected benefits of reducing latency and bandwidth utilization
desired from aggregation; and (4) aggregation gains are almost
invariant to the choice of cache allocation strategy (i.e., edge-
vs. uniform-caching). Together, these observations imply that
Interest aggregation should only be an optional mechanism
in Content-Centric Networking. Furthermore, if per-Interest
forwarding state is not needed for other purposes, the state-
full forwarding plane of NDN (realized through PITs) can
effectively be replaced with more efficient mechanisms, such
as CCN-DART [11], [12] and CCN-GRAM [13], in which
forwarding state is stored only per route or per destination
while providing similar end-to-end content delivery latencies.

Our model relies on the assumption that input streams
conform to the independent reference model, which need not
be true in reality. However, the simulation results in [12], [13]
indicate that in-network caching makes Interest aggregation
unnecessary even with spatio-temporal locality of Interests.
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