
Action Computation for Compositional
Software-Defined Networking

Heng Pan∗†, Gaogang Xie∗, Peng He∗, Zhenyu Li∗, Laurent Mathy‡
∗ICT, CAS, China, †University of CAS, China, ‡University of Liége, Belgium

{panheng, xie, hepeng, zyli}@ict.ac.cn, laurent.mathy@ulg.ac.be

Abstract—Software-defined networking (SDN) envisions the
support of multiple applications collaboratively operating on the
same traffic. Policies of applications are therefore required to
being composed into a rule list that represents the union of
application intents. In this context, ensuring the correctness and
efficiency of composition for match fields as well as the associated
actions is the fundamental requirement. Prior work however fo-
cuses only on the composition of match fields and assumes simple
concatenation for action composition. We show in this paper that
simple concatenation can result in incorrect behavior (for parallel
composition) and inefficiency (for sequential composition) for
actions composition. To address this issue, we formalized the
action composition problem and prove a feasibility condition on
the composition of rule actions. We then propose a graph-based
approach that facilitates fast composition of action lists without
action redundancy. Our proposed approach has been integrated
into the CoVisor code base and the evaluation results show its
fitness for purpose.

Index Terms—Software-defined Networking, composition, ac-
tion

I. INTRODUCTION

Software-Defined Networking (SDN) decouples control log-

ic from the forwarding devices to simplify network manage-

ment and enable complex network applications [1]. Such a

separation allows the control plane software and data plane

hardware to evolve quickly and independently. Recent interest

in SDN has moved to the implementation of various SDN

applications upon controllers written in different programming

languages. The vision of SDN is to construct an SDN “App

Store” [2], [3], [4] for network management services. Similar

to the Android Market or the Apple Store, network adminis-

trators could download applications suited to their needs from

the SDN “App Store” and deploy them into the network. For

example, a single network could run simultaneously a firewall

written in Java on OpenDaylight [5], a routing application

written in Python on Ryu [6] or a monitoring application in

C on NOX [7].
To realize this vision, a mechanism that compiles different

processing logics of applications to cooperate correctly in the

data plane is essential. In general, there are two types of

approaches towards such a mechanism: top-down and bottom-
up. The top-down approaches use either domain specific pro-

gramming languages [8], [9], [10] or a specific programming

framework [11], [12], to express each application as a program

(module) or an expressive equivalent (e.g. graph in [11]).

These programs are then translated into a set of low-level

OpenFlow rules representing the union of the intents of the

applications. The bottom-up approaches on the other hand uti-

lize SDN hypervisors [13], [14], lying between the controllers

and the underlying forwarding devices, to compose policies1

into a prioritized list of (OpenFlow [15]) rules. Nonetheless,

both types of approaches essentially face the same challenge:

composing multiple policies, each representing the intent of

an application (program, module), into a single rule list that

represents the union of these intents.

In the context of composing multiple policies, two types of

composition operators have been proposed in existing SDN

programming frameworks: parallel (+) and serial (>>) [9],

[16], [10], [17], [18]. Parallel composition gives the illusion

that each member policy acts on its own separate copy of the

traffic while sequential composition enables multiple policies

to operate on traffic in sequence. For example, if the hypervisor

applies a composition configuration as follows: Firewall
>> (Monitoring + Routing), packets will be pro-

cessed first by Firewall, and then operated on by Monitoring

and Routing concurrently.

A policy consists of match fields and the associated atomic

actions, which enable programmers to design abundant ex-

pressive behaviour represented as a sophisticated action list.

A practical composition mechanism should ensure that the

composed rule of multiple policies is correct (in terms of ap-

plication intents) and efficient (in terms of packet processing)

for both match fields and action lists. Prior work on policy

composition [13], [19], [14], [11] however mostly discusses

how to merge the match fields of rules from different member

polices and how to calculate the priority of the composed

rules, leaving action composition much overlooked. Indeed,

the action composition essentially boils down to the “union”

of actions (often implemented as the concatenation of actions)

in the previous work. This observation was corroborated by

inspection of the released code of the CoVisor system [20]

and many language implementations such as Frenetic [21].

We show that simple concatenation for composing action

lists not only cannot preserve the semantics (or interests)

expected by the original member policies but also can result

in wasted compute cycles in the resource constrained for-

warding path environment of switches. For example, consider

one member policy rule’s action list is {push_vlan(1),

1To simplify our discussion, we use the terms “policy” and “application”
interchangeably.ISBN 978-3-901882-83-8 c© 2016 IFIP

19Networking 2016



tcpdst ← 80, fwd(1)} while the other is {dstip
← 10.0.0.1, tcpdst ← 80, fwd(2)}. If the cor-

responding two rules are composed to operate on pack-

ets in parallel, and the actions lists are simply concate-

nated, the result becomes {push_vlan(1), tcpdst ←
80, fwd(1), dstip ← 10.0.0.1, tcpdst← 80,
fwd(2)}, which obviously violates the semantics of the

second original rule, since the packet appearing on port 2

are different from the one that would have been generated

by this second rule, had it been operating alone. This is

because the second rule forwards the input packets with

modified IP destination address 10.0.0.1 to port 2, while

the composed action list forwards the input packets with both

the appropriately modified IP destination address and an added

vlan header to port 2. Obviously, the second action of tcpdst
← 80 is redundant, which wastes the compute cycles of

underlying switches. Overall, to the best of our knowledge,

there is no mechanism to effectively compute action sequences

for composing SDN policies.

Motivated by our observations, we in this paper address the

challenge of correct and efficient action composition in the

context of policy composition. our contributions are four-fold:

1) We show and prove, feasibility conditions on the com-

position of rule actions in SDN networks. By extension,

this result also applies to the feasibility analysis of the

composition of the policies themselves;

2) We derive a feasibility test, which can be applied to the

“on-the-fly” composition of rules.

3) We propose a graph-based approach for fast computation

of the actions of a composed rule. The approach has

negligible effect on the performance of the composition

operation itself, while resulting in the minimum number

of actions to be performed in the data plane of switches;

4) We integrate our action composition algorithms in the

CoVisor code base2.

The rest of the paper is organized as follows: Section II

describes the background and motivation for our approach. We

present theoretical fundamentals and a model for action list

composition in Section III. In Section IV, we detail efficient

algorithms based on the model for the composition operators.

Section V presents experimental results of these algorithms.

We conclude with perspectives on our contributions in Sec-

tion VI.

II. BACKGROUND AND MOTIVATION

To set the scene, we first briefly present some features

of SDN policy, and then review the parallel and sequential

composition operations introduced in [14], [13], [19], [9].

Finally, we give examples to motivate our work.

A. SDN Policies

To fix ideas, one can think of OpenFlow [22] policies,

although our work is general and not limited to OpenFlow. A

2Our algorithms can be applied to other high-level programming frame-
works very easily.

policy is expressed as a set of prioritized rules. Each rule R is

a 3-tuple R = (p;m; a), where R.p is the rule’s priority, R.m
represents the match field patterns and R.a is a sequential

“program” (i.e. list) of the actions to be applied to packets

matching the rule (see Figure 1).

Fig. 1. Example of policy as a rule table. Smaller priority values imply higher
priorities.

The match fields in R.m can, in all generality, consist

of any number of adjacent packet bits (although they are

usually limited to packet header fields) and ingress port. The

set of match fields is the same for each rule in the policy,

and their values can be any pattern including exact values,

ranges (including prefixes), wildcards (matching any value),

etc. If a packet potentially matches several rules, the rule with

the highest priority is selected as the actual match, and the

associated action list is applied to the packet. How a policy

is implemented inside a switch (e.g. hardware table, pipeline

of hardware tables, software hash, etc) is not relevant to the

considerations of this paper.
We consider that actions are of three types: modify actions,

whose effect is to modify packets or packet headers; forward-
ing actions, whose effect is to instantiate a packet on a port

(i.e. forward the packet through the port); and miscellaneous
(misc) actions, whose effect does not directly affect a packet

(e.g. count actions, action list modification actions, etc.) Note

that some of these misc actions have externally observable

side-effects (such as actions modifying counters), while others

do not (such as actions clearing the action list). To simplify,

in this paper, we only consider counters associated with rules

(one counter per rule) which count the number of packets for

which the corresponding rule was a “hit” (and thus a count
action simply increments such counter).

In this context, each rule of a policy is a function:

F (p) → (p′, port)+|d
where (p′, port) is a forwarding pair representing the packet

p′ appearing on port port, and d represents some statistics data

side-effects. The (·)+-notation indicates that a rule can gener-

ate 0, 1 or more forwarding pairs for the given input packet

p, depending on the packet’s input port (which is part of the

rule’s matching pattern), and the packet itself. d is a positive

integer (possibly 0) that represents the increment to be applied

to the counter associated with the rule. Switches “implement”

these functions by “executing” the actions associated with the

rules3.
From this, we can simply define the notion of action list

equivalence: two action lists (i.e. two rule programs) are

3More precisely, switches select the highest priority rule matching the
packet and only execute the corresponding actions.

20Networking 2016



equivalent if and only if, for any packet p, F1(p) ≡ F2(p). In

other words, two action lists are equivalent, if they 1) produce

the same forwarding pairs, and 2) count the same packets.

B. Composition Operators

The composition operators fall into two major categories:

parallel composition and sequential composition. Here, we

give a simplified overview for these composition operators and

their compile algorithms presented in the prior art [13], [19].

Parallel Operator (+): The parallel operator compiles two

policies into a single one which behaves as though packets

were matched and processed by the two policies operating

concurrently on their own copy of the traffic. For example,

take a monitoring policy Monitor that counts packets with

source IP prefix 3.0.0.0/8 while dropping others. If a routing

policy Route forwards packets with destination IP 2.0.0.1 to

port 1 and drops others (see Figure 2), then, with the parallel

operator, we can generate a single policy Monitor + Route
shown in Figure 2.

Fig. 2. Example of parallel composition, adapted from [16]

Next, we recall the existing compiler algorithms of the

parallel operator using the example in Figure 2. To compile

Monitor+Route, the compiler algorithms will calculate the

cross product of rules from Monitor and Route as follows:

any rule mi ∈ Monitor and rj ∈ Route, mi and rj can

generate a composed rule as long as mi.m∩ rj .m �= ∅, using

the intersection as its match fields and the concatenation of

mi.a and rj .a as its action list. For example, consider m1

and r1 (the first rule in Monitor and Route respectively).

As m1.m∩ r1.m is {srcip=3.0.0.0/8, dstip=2.0.0.1}, they can

generate a composed rule - the first rule in Monitor+Route.

Sequential Operator (>>): The sequential operator en-

ables multiple policies to operate packets in series by com-

bining those policies together. For example, suppose we have

a load balancer policy LB that distributes traffic to two back-

end servers by rewriting their IP destination address while

a routing policy Route forwards packets based on their IP

destination address (see Figure 3). Via the sequential operator,

the composed policy will first rewrite the IP destination

address and then forward these packets.

For the sequential composition of policies, the compiler

algorithms compute the cross product of rules from the two

Fig. 3. Example of sequential composition.

policies (LB >> Route) as follows: apply the associated

action list on the match fields of the rules from LB, and then

check, for any rule li ∈ LB and rj ∈ Route, whether the

intersection of li.m and rj .m is empty or not. A composed

rule is generated as long as li.m∩rj .m �= ∅, through merging

the match fields of li.m and rj .m as the match fields, and

concatenating li.a and rj .a as the action list.

C. Motivating Examples

Let us first consider two policies, say P1 and P2, to be

composed by parallel composition. From the very definition of

parallel composition, the parallel composition of these policies

should behave as though these policies operated in “parallel”

on their own copy of the traffic. In other words, the packets

generated by the parallel composition must be the union of

the packets that would be generated by each policy operating

on the traffic independently.

More formally, if L1(p), L2(p) and L//(p) denote the sets

of forwarding pairs respectively generated by P1, P2 and the

parallel composition of these policies, then

P//(p) ≡ P1(p) + P2(p) ⇒ L//(p) = L1(p) ∪ L2(p)

It is trivial to prove that the parallel composition operator

is commutative, that is that P1(p) + P2(p) = P2(p) + P1(p),
since L1(p)∪L2(p) = L2(p)∪L1(p), confirming the intuition

that the order in which the policies are composed should not

affect the result of the parallel composition.

However, existing compositional systems all propose to

construct the action list of a rule resulting from parallel

composition as a simple concatenation of the action lists of

each composed rule (P//(p) ≡ P1(p) + P2(p) → a//(p) =
a1(p) ◦ a2(p)). Concatenation is obviously not commutative:

if, for instance, a1(p) = {dstip ← 8.0.0.2, fwd(2)}
and a2(p) = {fwd(1)}, then a1(p) ◦ a2(p) forwards the

same packet (whose destination address has been changed to

8.0.0.2) on both port 1 and 2, while a2(p)◦a1(p) forwards the

original input packet to port 1 and the packet with a modified

21Networking 2016



destination address to port 2. As parallel composition is a

commutative operation, it therefore cannot be realized through

simple action concatenation.

For sequential composition, which is not a commutative

operation by definition, simple concatenation of action lists is

also used. It is however, also easy to show that, while correct,

concatenation of actions can lead to redundant actions. Indeed,

consider, for instance, a1 = {vlan ← 1} and a2 ={vlan
← 2, fwd(1)}. P1 >> P2 yields a>> = {vlan ← 1,
vlan ← 2,fwd(1)}. Conceptually, the first modification in

the composed action list is redundant, leading to wastage in

the resource constrained switch fast path4.

We therefore see that simple concatenation for the compo-

sition of action lists cannot always preserve semantic equiv-

alence and correctness, or achieve optimal operations in the

data path. As a result, we conclude that action list composition,

in the context of policy composition operators, needs to be

revisited. We provide deeper analysis and solutions in the next

few sections.

III. ACTION COMPOSITION MODEL

Essentially, actions are used in rules to transform input

packets into output packets with specific properties, forward

these output packets to output ports, as well as keep statistics

on packets or rules. While other use of actions exists, such

as circumventing a switch’s lack of capabilities, it is the

above mentioned observable results of actions that matter for

compliance of the implemented policies.

The same is true for the composition operators: as long as

the observable forwarding pairs and statistics comply with the

intended compositional semantics, the result of the composi-

tion is correct.

A. Constructible Sequence and Graph-based Model

With the existence of set/write actions capable of

setting any sequence of bits and/or fields to any specified value

in the packet header, generating a packet with any specific

header may seem trivial. However, this is not the case.

Indeed, the composition of policies is computed by the

SDN hypervisor (a control plane component), using the policy

rules, while the specific packet headers are only known by the

switches (the data plane). In other words, the hypervisor can

only rely on the rule matching patterns to represent packets,

and the crux of the problem is that match patterns can contain

“don’t-care” bits (e.g. wild-cards, ranges, prefixes, etc.)

This is an issue, because once a part of a packet, correspond-

ing to a match pattern containing “don’t-care” bits, has been

set to any specific value by a set action, there is generally no

way to revert such change, as “don’t-care” bits always match

multiple values (see Figure 4).

The only way to revert a packet field, corresponding to a

rule match field containing “don’t-care” bits, is constructing

switches that can copy and save the original field value

from the input packet. However, current switch chipsets are

4Any (unnecessary) operation in the data plane potentially leads to a
decrease in forwarding rate.

Fig. 4. Example of “don’t-care” bits. F2 in the rule contains one “don’t-care”
bit and thus matches two different values.

not willing to support such actions for three reasons. First,

recording packet values needs extra memory which is expen-

sive in resource limited switch chips; second, enabling copy

action causes race conditions because commodity switches

usually process packets in parallel; third, each revert needs

two memory copy operations (packet to memory and memory

to packet), leading to a lower performance. Thus, packet fields

fall into two categories:

1) Irreversible fields: packet fields that 1) cannot be copied

from the original (input) packet, and 2) correspond to

match fields that contain “don’t-care” bits in the policy

rule.

2) Reversible fields: packet fields that either can be copied

from the original (input) packet or that correspond to

match fields specifying an exact (unique) value (no

“don’t-care” in the bit pattern of the field, the exact

original value being thus available to the composing

hypervisor).

Consequently, in the presence of changes to irreversible

fields (see Figure 5), not every sequence of packets can be

generated by a switch, from a given input packet. In fact, a

set of output packets is said to be constructible from a given

input packet if there exists a sequence (i.e. permutation) of

those packets, starting with the input packet, such that no

change to an irreversible field must be reverted to progress

in the sequence. We now prove a fundamental theorem on

constructible sequences of packets.

We call ICi the set of irreversible fields that must change

to generate output packet pi from input packet pin. Note that

since changes to reversible fields can always be reversed (i.e.

undone), reversible fields can safely be ignored in feasibility

considerations.

Theorem 1. (CONSTRUCTIBLE SEQUENCE THEOREM): Giv-
en an input packet pin, n output packets pi and their set of
irreversible field changes ICi (1 ≤ i ≤ n), the sequence
< pin, p1, p2, . . . , pn > is constructible iff IC1 ⊆ IC2 ⊆
. . . ⊆ ICn.

Proof. We prove the forward direction by contradiction. As-

sume the sequence is constructible. Also assume that there

exists an irreversible field ifk that changes to generate pi, but

does not change to generate pj further in the sequence, that

is ∃ifk : ifk ∈ ICi, ifk �∈ ICj , with i < j.

Since ifk �∈ ICj , the value of ifk in pj is the original value

22Networking 2016



Fig. 5. Example of reversible and irreversible field changes.

of that field in pin. Also, since i < j, pj is constructed after

pi in the sequence, and this can only be possible if the change

to irreversible field ifk, that was necessary to generate pi has

been reversed to generate pj . This is a contradiction, since ifk
is an irreversible field. We therefore have that in a constructible

sequence, (i < j, ∀ifk : ifk ∈ ICi) ⇒ ifk ∈ ICj , which

implies that ICi ⊆ ICj , i < j.

We prove the reverse direction by induction. Base case:

by definition of ICk, any packet pk can be constructed from

pin by changing the irreversible fields in ICk (along with

possibly changes to some reversible fields). In particular, p1
can always be generated from pin by changing the (irre-

versible) fields in IC1 (such operation is denote pin →ICi p1).

Inductive case: assume the prefix subsequence up to packet

pk (< pin, p1, p2, . . . , pk >) is constructible. We show that

pk+1 is constructible (can be generated) from pk, given that

ICk ⊆ ICk+1. Indeed, ICk+1 = (ICk ∩ ICk+1) ∪ (ICk+1 \
(ICk ∩ ICk+1)). But since ICk ⊆ ICk+1, we have that

ICk ∩ ICk+1 = ICk, so that pin →ICk∩ICk+1
pk. This

means that pk can be generated as a step in the construction

of pk+1. From this step, the remaining changes in ICk+1, that

is all the changes in ICk+1 \ (ICk ∩ ICk+1) can be applied

to yield pk+1 (pk →ICk+1\(ICk∩ICk+1) pk+1). We therefore

have pin →ICk∩ICk+1
pk →ICk+1\(ICk∩ICk+1) pk+1 =

pin →ICk+1
pk+1.

When an SDN hypervisor is composing policies, it does not

generally know the exact values of the fields of the packets that

will hit the resulting rules. Still, it can “simulate” the effects

of applying the actions associated with the rules (according

to the composition operators used), so that it can “compute”

the packets, in terms of which input packet fields get modified

or not, and on which ports these packets get forwarded. The

discussion and results describe above therefore suggest that the

problem for the hypervisor is thus to find the right sequence for

generating the output packets, given that as soon as an output

packet has been constructed, it can simply be forwarded to the

correct ports by issuing appropriate forward actions.

A convenient way to model the process of constructing

packets is thus as a graph, where vertices represent each unique

packet in the process (that is the input packet and each output

packet to be generated), and where there is an oriented edge

between two vertices if a series of actions can transform the

source packet into the destination packet. The important thing

to remember, is that reversible packet fields can always be

changed to any value in any order, while irreversible fields

can only be set to specific (known) values, but cannot be

reverted to their unknown original (input) value. The resulting

graph is thus not a “full mesh” (since some packets cannot

be constructed from others). Each edge in the graph can then

be labelled with the set of packet modification actions needed

to actuate the transformation from the source packet to the

destination packet (see Figure 6).

Fig. 6. Example of graph-based action composition. ICpin = ICp2 = ∅,
ICp3 = {F2, F3}, ICp4 = {F2}. An oriented edge from pi to pj exists
iff ICpi ⊆ ICpj . A path starting from the input packet pin and visiting
each vertex is pin → p2 → p4 → p3. The corresponding action list is
F1 ← 0010, F2 ← 0011, F1 ← 0001.

With such a graph, generating the required packets, and

computing the associated action list, reduces to finding a

Hamiltonian path [23], starting at the input packet, if such path

exists. Indeed, a Hamiltonian path through a graph visits each

vertex exactly once, corresponding to every output packets

being generated.

However, the Hamiltonian path problem is known to be NP-

complete [23], [24]. In section IV, we discuss algorithms to

find such a path, while aiming to minimize the number of

actions required to actuate the construction of output packets.

B. Misc Action Considerations

A misc action associated with a rule counts the number of

packets for which the corresponding rule was a “hit”. Let us

consider two policies P1 and P2 that need to be composed.

Suppose r1 ∈ P1 has a misc action to count C(r1) the number

of packets that hit r1. After composition of P1 and P2, we still

need to get C(r1) from the composed policy.

Let S(r1, P2) denote the set of composed rules that contain

the semantic of r1, i.e., S(r1, P2) = {r1.m ∩ ti.m|r1.m ∩
ti.m �= ∅, ti ∈ P2}. For each composed rule si ∈ S(r1, P2),

23Networking 2016



we associate one misc action to count the number of packets

that hit si. We then have the following Theorem for the

restoration of C(r1) from the composed policy.

Theorem 2. (QUERY STATISTICS): Given two policy P1 and
P2, policy M is composed of P1 and P2. The counter C(r1)
associated with the rule r1 ∈ P1 can be computed as:

C(r1) =
∑

C(si)

where si ∈ S(r1, P2) ⊆ M and S(r1, P2) = {r1.m ∩
ti.m|r1.m ∩ ti.m �= ∅, ti ∈ P2}.

Proof. On the one hand, for any packet that hits r1, it can hit

at least one rule of S(r1, P2): the rule composed by r1 and the

default rule of P2. On the other hand, due to the priorities

of composed rules, any packet can hit no more than one rule

of S(r1, P2). As such, any packet that hits r1 can hit exactly

one rule of S(r1, P2). In other terms, the number of packets

that hit r1 is equal to the number of packets that hit the rules

of S(r1, P2) ⊆ M .

IV. ACTION COMPOSITION ALGORITHMS

We showed in section III that the problem of finding a con-

structible sequence of packets to implement the composition

of policies reduces to finding a Hamiltonian path in a graph.

While this problem is generally NP-complete, Theorem 1

states a fundamental property of such sequences that can be

exploited to efficiently find such sequence.

Indeed, Theorem 1 shows that, in a constructible sequence,

changes to irreversible fields must be applied “incrementally”,

due to the “nesting” of the set of irreversible fields that have

changed (compared with the input packet), from one packet

in the sequence to the next; in other words, packets further in

the sequence, can only be constructed by either “adding” more

changed irreversible fields or changing again (to specific know

values) some of these fields, compared with earlier packets in

the sequence.

This observation leads to a very simple, straightforward and

efficient algorithm (see Algorithm 1) to not only test for the

existence of a constructible sequence, but also obtain one such

sequence of packets (if it exists).

All we need to do is to represent all the irreversible fields

in a rule as a bitmap. Remember that what makes a header

field irreversible is the presence of “don’t care” bits in the

pattern of the rule representing that field and the lack of

switch capability to save the original value of this header

field in the input packet, both properties being known to

the compositional hypervisor. Then for each desired output

packets (again, these are know to the hypervisor), set to 1

the bits corresponding to changed irreversible fields (lines 1

to 4). Then sort the “output packets” by the number of bits

set in the bitmap (line 5), because irreversible field changes

must be applied incrementally. Then sweep across the or-

dered packets, checking if bitmap(k) & bitmap(k+1)
== bitmap(k), which is equivalent to checking that the

set of irreversible field changed in one packet is completely

Algorithm 1: SIMPLESEARCH(pin, {pout}, {IF})

Input: pin: input packet

Input: {pout}: set of (unique) output packets

Input: {IF}: set of irreversible fields in the rule

Output: path: Hamilton path “vector” (“empty” if no

such path exists)

1 path ← newEmptyVector();

2 for p ∈ {pout} do
3 bm ←BitMap(pin, p, {IF});

4 path.append((p, bm));

5 sort(path, ByNumberOfBitSet);

6 thisP ← path.first();

7 while (nextP ← path.next()) �= NULL do
8 if thisP .bm & nextP .bm �= thisP .bm then
9 return newEmptyVector();

10 thisP = nextP ;

11 return path;

contained in the set of irreversible fields changed in the next

packet (as required by Theorem 1). If this test succeeds for

each consecutive pair of packets, then not only a constructible

sequence of packets exists, but the ordered packets is one such

sequence (lines 6 to 11).

The complexity of this algorithm, given n output packets

to generate, is O(n) for generating the bitmaps; O(n lg n) for

sorting; and O(n) for testing the inclusion relation. Therefore

the overall complexity is O(n lg n).

From the returned sequence of packets (if it exists), the

compositional hypervisor can compute the action list for the

corresponding (composed) rule by simply concatenating the

modify actions required to generate each packet in the path,

from the preceding packet, and issuing the required forwarding

actions whenever the desired packets have been generated.

While Algorithm 1 finds a constructible sequence of packets

if such sequence exists, this sequence may not be optimal

in terms of the number of actions required to generate the

sequence. This is because packets that have the same set of

modified irreversible fields (and thus only differ from each

other by different sets of modified reversible fields) can appear

in any relative order in the sequence.

See, for instance, packets P3 and P4 in Figure 7. The

total cost of the path is 6 ( 1© + 2© + 3© + 4©). But there

is another constructible sequence of packets, obtained by

exchanging packet P3 and P4 in the packet sequence, with

reduced cost 5. This is because the cost from P5 to P4

is 1 (F3 ← 0001) while P4 to P3 requires 2 modification

operations (F1 ← 0011, F3 ← 0011). The reason why we can

change the order of P3 and P4 to get a lower cost path is that

they contain identical sets of modified irreversible fields, i.e.

IC3 = IC4.

While Algorithm 1 actually worked on an implicit represen-

tation of the graph model for packets described in Section III,

finding optimal sequences will require an explicit representa-

24Networking 2016



Fig. 7. Example of a Hamilton path. The packets sequence sorted by the
number of irreversible changes provides one Hamilton path.

tion of this graph.

The graph for packet generation as described in Section III

would have a directed edge between two packets if no modified

irreversible field has to be reverted to its original value (in

the input packet) to go from the “source” vertex to the

“destination” vertex. However, this is far too many edges:

indeed, because of the transitivity of the “subset” relationship

(i.e. “contain” operations) required of the modified irreversible

field subsets of the packets in a constructible sequence (The-

orem 1), a sub-sequence P1 � P2 � P3
5, would also

imply one directed edge P1 � P3. However, the P1 � P3

edge is completely useless, because it will never be part of a

Hamiltonian path in the graph: a sequence can never go back

to P2 from P3, as this would mean reverting (at least) one

irreversible change.

The output of the simple Algorithm 1 can here help avoid

generating these useless edges in the graph, and thus reduce

the space to be searched for optimality. Indeed, this simple

algorithm outputs packets ordered by their number of modified

irreversible fields. Any sub-sequence of adjacent packets with

the same number of such modifications thus forms a group of

packets whose order can be changed while still conserving a

constructible sequence. This is because packets in each group

form a “local full-mesh”, and they only differ from each other

by modifications to reversible fields. The simple algorithm

therefore also gives the sequence of groups, and there thus

only needs to be an edge from each packet in a group, to each

packet in the following group in the sequence (see Figure 8).

While finding an optimal path (in terms of the number

of actions needed) in such graph is still an NP-complete

Hamiltonian path search, we argue that in practical scenarios,

the number of distinct output packets to be generated will be

5We suppose IC1 ⊆ IC2 ⊆ IC3. ∀i ∈ [1, 3], ICi corresponds to Pi.

Fig. 8. Example of packet grouping.

kept relatively low (so the number of vertices in the graph

will be small). Furthermore, this graph only contains edges

that potentially belong to a constructible sequence (so the

number of edges has been reduced to a minimum). Because

of this “reduced” search space, we believe that a brute-force

algorithm, enumerating all the (Hamiltonian) paths in the

graph is a plausible solution to the optimal Hamiltonian path

finding problem at hand.

Nevertheless, should the search space become too big, the

compositional hypervisor can always decide to use a heuristic

algorithm (such as one based on a greedy approach) instead,

to trade running time for potential deviation from optimality6.

V. IMPLEMENTATION AND EVALUATION

We have implemented our model and the related algorithms

in CoVisor [13]. Using this implementation we evaluate its

performance.

More specifically, we replaced the core logic of action lists

composition for both the parallel and sequential operators.

Note that we implemented three Hamilton path searching

algorithms: the simple algorithm (Algorithm 1), the brute-

force (a.k.a. enumeration) algorithm and a greedy algorithm,

picking the less weighted edge whenever a choice is available

when searching for the Hamilton path: suppose the last added

vertex in the path is v, then the next vertex in the path is

u=argminu∈U(v) W (v, u), where W (v, u) is the weight (i.e.

the number of modification actions) of the edge from v to u
and U(v) is the set of destination vertices of edges from v.

This greedy algorithm works, because we ensure that the graph

only contains edges that are potentially part of a Hamilton path

(see Section IV).

A. Experimental Setup

We deployed our implementation on an octo-core

Intel R©Xeon R©E5506 CPU, clocked at 2.13GHz. The machine

is equipped with 16GB RAM and runs 64-bit Ubuntu Linux

10.04.3. We used two rulesets for our experiments:

1) D1 (real-life policies): L3 Router [26] and L3 Firewall

[27].

2) D2 (synthetic policies): rules are generated associated

with multiple types of actions (e.g. modification, for-

6As an extreme case, the hypervisor could even choose to use the output
of the simple algorithm.

25Networking 2016



warding and misc actions) to reflect more dynamic,

complex scenarios.

Each rule of D1 contains one forwarding action. Each

rule of D2 on the other hand contains multiple modifica-

tion/forwarding actions. To generate modification actions in

D2, we randomly select one packet header field as the field

that is modified by the action, whose value after modification is

also randomly assigned. The number of distinct output packets

for each rule is controlled through forwarding actions. In the

experiment, an action list can generate no more than 10 distinct

(different) output packets for one input packet – we believe

this value to represent an unrealistic value, chosen to illustrate

absolute worst case scenarios. The match pattern for IP address

is prefix-based, while for other match patterns (like port, MAC

address, vlan), we use exact match.

We are interested in four aspects of performance: 1) the

computation time; 2) factors that affect the computation time;

3) contribution of the various components to the computation

time; 4) comparison between the three path search algorithms

in terms of computation time and optimality.

B. Experimental Results

TABLE I
COMPUTATION TIME OVER TWO POLICIES (IN μS).

average minimum maximum
D1 85 72 95
D2 249 125 380

The average, minimum and maximum computation time

of the enumeration algorithm are reported in Table I. The

action lists of any rule in D1 can be computed within 95

μs. Computation of action lists for rules in D2 takes a longer

time and the average time is around 250 μs. This is because

rules in D2 have more complex actions and can generate more

distinct output packets. Nevertheless, the computation time is

relatively small, showing that our approach is practical.

(a) (b)

Fig. 9. Variation of computation time with two factors: (a) the number of
vertices in a group, (b) the number of groups.

The computation time depends on both the number of

vertices in groups and also the number of groups in our

graph-based model. We first select the actions from D2 that

have 6 groups. Figure 9(a) plots the computation time when

varying the number of vertices. As expected, a larger number

of vertices leads to a higher computation time. But, even

with 10 vertices, the computation time is still within 320 μs.

We then select the actions from D2 that have 7 vertices.

The computation time with different number of groups is

reported in Figure 9(b). A larger number of groups leads

to a smaller number of vertices per group. Given that the

permutation within each group is one of the major contributors

on computation time, a smaller number of vertices in each

group in turn results in lower computation time.

(a) (b)

Fig. 10. Comparison of three algorithms in terms of computation time: (a)
varying the number of groups. (b) varying the number of vertices.

We then compare the three algorithms for the Hamilton

path search in terms of computation time. Figure 10 shows

the computation time of the three algorithms, where we vary

the number of groups while fixing the number of vertexes

(Figure 10(a)), and vary the number of vertexes while fixing

the number of groups (Figure 10(b)). Since the enumeration

and greedy algorithms use extra optimization (necessitating the

output of the simple algorithm to generate a “reduced” graph,

see Section IV), they requires to use more computation time.

Compared with enumeration algorithm, the greedy one can

save up to 50% of the computation time, and is less relevant

to the number of vertices and the number of groups.

Fig. 11. The three scenarios. r. represents reversible fields.

Finally, we evaluate the amount of actions in the Hamilton

path generated by the three algorithms. To this end, we

construct three scenarios based on D2 (see Figure 11). In all

three scenarios, one input packet would generate two groups

of outputs. In the small rules scenario, each group contains

two packets which change 1 (out of 2) reversible field; in the

medium rules scenario, each group has three packets which

change 2 (out of 3) reversible fields; in the big rules scenario,

26Networking 2016



Fig. 12. Number of actions generated by the three path search algorithms,
normalized by the number of actions in the path generated by the enumeration
algorithm.

each group has five packets which have 3 (out of 5) reversible

fields. We apply the three algorithms on each scenario and

plot the number of actions in the path generated by each

algorithm in Figure 12. We can see that, compared with the

enumeration algorithm (which is optimal), the simple search

algorithm generates up to 20% more actions, and the greedy

algorithm incurs up to 15% more actions.

In summary, given that the composition of policies is

performed in servers (like controllers) other than switches

themselves, we believe the enumeration algorithms is more

applicable in practice in order to obtain optimal results.

VI. CONCLUSION

Policy composition has been emerging as a powerful and

important tool for facilitating the creation and deployment of

complex network applications. As the developer or network

administrator requesting such composition may not master, or

even want to know, the details of each policy component being

composed, it is of paramount importance that compositional

operators be supported in as much a transparent and effi-

cient manner as possible. Previous work introduced important

headways in this direction by proposing efficient techniques

to compute the matching patterns for composed rules. Our

work complements this by tackling the problem of correct and

efficient action list computation, another important component

of policy rules.

In particular, we formalize an action composition model,

and prove a feasibility condition on the composition of rule

actions. We abstract the action composition as a Hamilton

path search problem in a directed weighted graph, while

exploiting fundamental properties specific to the resulting

graph to compute solutions, to this otherwise NP-complete

problem, efficiently. We show that our approach is not only

correct, but also efficient.

ACKNOWLEDGMENTS

We thank the IFIP Networking reviewers for their insightful

feedback. This work is supported in part by National High

Technology Research and Development Program of China

(Grant No. 2015AA016101 and 2015AA010201), National

Natural Science Foundation of China (Grant No. 61502458

and 61502462) and Beijing Municipal Natural Science Foun-

dation (Grant No. 4162057).

REFERENCES

[1] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
2009.

[2] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] “The hp sdn app store.” http://h17007.www1.hp.com/us/en/networking/
solutions/technology/sdn/devcenter/#sdnAppstore.

[4] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, et al.,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, 2014.

[5] “Opendaylight.” http://www.opendaylight.org/.
[6] “Ryu openflow controller.” http://osrg.github.io/ryu/.
[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[8] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
in ACM CoNEXT, 2014.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN Notices, vol. 46, pp. 279–291, ACM, 2011.

[10] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 217–230, 2012.

[11] Y. T. Chaithan Prakash, Jeongkeun Lee and J.-M. Kang., “Pga: Using
graphs to express and automatically reconcile network policies,” in
Proceedings of the 2015 ACM conference on SIGCOMM, ACM, 2015.

[12] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” 2015.

[13] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in Proc. USENIX NSDI,
2015.

[14] A. Dixit, K. Kogan, and P. Eugster, “Composing heterogeneous sdn
controllers with flowbricks,” in Network Protocols (ICNP), 2014 IEEE
22nd International Conference on, pp. 287–292, IEEE, 2014.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al.,
“Composing software defined networks.,” in NSDI, pp. 1–13, 2013.

[17] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta,
C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, et al., “Languages for
software-defined networks,” Communications Magazine, IEEE, vol. 51,
no. 2, pp. 128–134, 2013.

[18] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[19] X. Jin, J. Rexford, and D. Walker, “Incremental update for a compo-
sitional sdn hypervisor,” in Proceedings of the third workshop on Hot
topics in software defined networking, pp. 187–192, ACM, 2014.

[20] “The opensource code of covisor.” https://github.com/CoVisor/CoVisor.
[21] “The code of frenetic language..” http://frenetic-lang.org/pyretic/.
[22] “Openflow switch specification.” https://www.opennetworking.org/.
[23] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.
[24] A. A. Bertossi, “The edge hamiltonian path problem is np-complete,”

Information Processing Letters, vol. 13, no. 4, pp. 157–159, 1981.
[25] “Openflow switch specification.” https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf.

[26] “Routereview.” http://www.routeviews.org/.
[27] “The rules set of evaluation packet classification.” http://www.arl.wustl.

edu/∼hs1/PClassEval.html.

27Networking 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


