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Abstract – We hypothesized that NDVI time-series composite 
imagery or clustered data derived from the NDVI time series could 
serve as effective surrogates for land cover data in predictive 
modeling of species’ ecological niches and potential geographic 
distributions. Using two Mexican bird species, we examined our 
hypothesis with GARP, the Genetic Algorithm for Rule-set 
Prediction. Inputs included topographic and climate data, as well as 
the NDVI and clustered NDVI datasets. We used a land cover map 
previously derived from the NDVI dataset for comparison testing. 
Considering only topographic factors, we found that the NDVI or 
clustered NDVI data performed as well as or better than the land 
cover data. When climate data were added, the land cover data 
performed better than the NDVI data, but improvements were slight. 
 
 

I. INTRODUCTION 
 

The use of ecological niche modeling is increasingly 
important in such diverse areas as gap analysis, habitat 
preservation, and the monitoring of invasive plant and animal 
species [1]. This modeling typically proceeds by linking 
known species occurrences (generally from natural history 
museum data) with geo-registered environmental datasets 
such as elevation, precipitation, temperature, and land cover 
to create a model of a species’ ecological niche. This niche 
model is then projected back onto the landscape to predict a 
potential geographic distribution for the species.  

Although all environmental datasets are subject to 
weaknesses (e.g., time-series discontinuities, poor spatial 
distribution of measurement sites), land cover maps offer 
particular challenges in ecological niche modeling: (1) 
production of land cover maps is time-consuming and costly, 
(2) thematic accuracy of land cover maps, especially those 
derived from coarse-scale, wide-area imagery such as 
AVHRR, is generally either low or inadequately reported, 
and (3) land cover maps derived from satellite imagery 
frequently fail to map classes that are relevant and necessary 
for predicting distributions of particular species. 

We examined the use of datasets derived from time-
series NOAA AVHRR imagery over Mexico as a surrogate 
for land cover maps in ecological niche modeling. Our 

underlying hypothesis was that one or more of the AVHRR-
derived datasets would be at least as effective in modeling 
species distributions as a land cover map derived from the 
same imagery. If such were to prove to be the case, it may be 
possible to use AVHRR, MODIS, or similar imagery, either 
in raw form or as easily and cheaply derived datasets, as 
direct inputs to models that predict species’ distributions. 

 
 

II. METHODS 
 

In this pilot analysis, we selected two bird species with 
well-known distributions in Mexico: Aphelocoma californica 
and Ergaticus ruber. A. californica inhabits relatively arid 
regions with scrub oak or pine woodlands, while Ergaticus 
ruber is found in mountainous areas with pine or pine-oak 
forest.  

Environmental datasets included three topographic 
datasets (elevation, slope, and aspect) and two climatic 
datasets (mean annual temperature and mean annual 
precipitation). Topographic data were from the Hydro 1K 
dataset obtained from the EROS Data Center, Sioux Falls, 
South Dakota [2]; climate data were obtained from 
CONABIO, Mexico City, Mexico [3]. For land cover, we 
used a land cover map of Mexico created previously by us 
using time-series AVHRR imagery and supervised 
classification [4] and two surrogate datasets derived from the 
same imagery: (1) seasonal maximum NDVI composite 
images for March, May-June, August-September, and 
December – four datasets in all, and (2) a clustered dataset 
created by applying ISODATA clustering to 12 monthly 
maximum NDVI composites. Grid cells measured 0.01° on a 
side. 

Ecological niche modeling was performed using GARP, 
the Genetic Algorithm for Rule-set Prediction, which uses 
atomic rules, range rules, negated range rules, and logistic 
regression to develop rule-sets for predicting species’ 
distributions [5]. We employed DesktopGarp software (a beta 
version developed at the University of Kansas Natural 
History Museum). GARP is designed to identify correlations 
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between known species occurrences and environmental 
parameters through an iterative process of rule selection, 
evaluation, testing, and incorporation or rejection.  

In GARP, a method is first chosen from a set of 
possibilities (logistic regression, BIOCLIM rules, etc.), 
applied to the data, and a rule developed. Then, based on 
1250 points resampled from the test dataset and 1250 points 
sampled randomly from the study region as a whole, 
predictive accuracy is calculated as the sum of points actually 
present that were predicted as present and those actually 
absent that were predicted as absent, divided by the total 
number of points in the map. Change in predictive accuracy 
from one iteration to the next is used to evaluate whether a 
particular rule should be incorporated into the model. The 
algorithm runs either 1000 iterations or until addition of rules 
has no appreciable effect on the accuracy measure 
(convergence) [6].  

Two groups of experiments were run for each species. 
The first experiments included one control group using 
topographic variables only (elevation, slope, and aspect) and 
three experimental groups that combined the topographic 
variables with one of the NDVI datasets or the land cover 
map: topography plus NDVI composite images, topography 
plus clustered NDVI data, and topography plus land cover 
(Table 1). 

The second set of experiments included a control group 
that combined topographic variables (elevation, slope, and 
aspect) and two climate variables (precipitation and 
temperature). Again, three experimental groups combined the 
topographic/climate variables with one of the NDVI datasets 
or the land cover map: topography and climate plus NDVI 
composite images, topography and climate plus clustered 
NDVI data, and topography and climate plus land cover 
(Table 2).   For each experiment, we generated 100 models 
per species. 

To evaluate model performance, we used random 50-50 
partitions of the available occurrence data to create data sets 
for model creation (training data) and model testing (test 
data). The independent test data were used to measure 
omission rates, and 100 – omission was used as a measure of 
model quality. For each species, Kruskal-Wallis ANOVA 
tests were used to test differences between control and 
experimental groups and among the experimental groups.  
 

Table 1. Topographic Data Only + Imagery Datasets 

Dataset Name Dataset Contents 
Topo Topographic variables 
TopoRaw Topographic variables 

Seasonal NDVI composite images (4) 
TopoClus Topographic variables 

Clustered 12-date NDVI data 
TopoSup Topographic variables 

Land cover map classes 

Table 2. Topographic and Climate Data + Imagery 
Datasets 

Dataset Name Dataset Contents 
TopoClim Topographic variables 

Climate variables 
TopoRawClim Topographic variables 

Seasonal NDVI composite images (4) 
Climate variables 

TopoClusClim Topographic variables 
Clustered 12-date NDVI data 
Climate variables 

TopoSupClim Topographic variables 
Land cover map classes 
Climate variables 

 
 

III. RESULTS AND DISCUSSION 
 

Model results can be seen graphically in Figure 1. 
Models that included only topographic variables, in 
conjunction with NDVI or land cover data, are in the four 
groups of bars on the left side of the graph. Models that 
included both topography and climate variables, in 
conjunction with NDVI or land cover, are shown in the four 
groups of bars on the right side of the graph. Models 
including climate variables generally performed better than 
models including topography only. Furthermore, for models  
using both topography and climate, differences among the 
land cover and land cover surrogate (NDVI and clustered 
NDVI) datasets are minor.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Results of Model Runs – Inverse Omission.  Bar 
heights indicate the inverse of the omission error.  Error bars depict 
standard error.  For explanation of model names (X axis), see Tables 
1 and 2. 

 
For Aphelocoma californica, the topography-only and 

the topography plus climate groups of experiments were 
significantly different (Kruskal-Wallis ANOVA: χ2 = 
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503.107, d.f. = 7, P < 0.001; Figure 1).  Comparing the 
experiments within the non-climate group, we found that 
topography plus clustered NDVI had statistically smaller 
omission (larger inverse omission) than other combinations 
(Kruskal-Wallis ANOVA: χ2 = 21.549, d.f. = 3, P < 0.001). 
In contrast, in the topography plus climate group, topography 
plus climate alone and topography and climate plus land 
cover performed statistically better than topography and 
climate plus NDVI composite images, and topography and 
climate plus clustered NDVI data (Kruskal-Wallis ANOVA: 
χ2 = 29.535, d.f. = 3, P < 0.001). 
 For Ergaticus ruber, we also found significant 
differences between the topography-only and the topography 
plus climate groups of experiments (Kruskal-Wallis 
ANOVA: χ2 = 433.234, d.f. = 7, P < 0.001; Figure 1). As with 
Aphelocoma californica, models that included climate 
variables performed better. 

Examining experiments within the topo-only group, we 
found that the model that used topography plus NDVI 
composite images had statistically lower omission than the 
other experiments (Kruskal-Wallis ANOVA: χ2 = 167.788, 
d.f. = 3, P < 0.001; Figure 1). On the other hand, in the 
topography plus climate group differences were more subtle 
(Kruskal-Wallis ANOVA: χ2 = 11.433, d.f. = 3, P < 0.05): the 
model using land cover (TopoClim) performed slightly better 
than those using NDVI composite images and clustered 
NDVI data. 

Spatial output from GARP also provides interesting 
insights. Since GARP generates distributional predictions 
based on random rule selection, and predictions vary from 
run to run, we generated 100 models per species. For visual 
comparisons, the 6 best-subsets models  were selected from 
among these analyses based on omission-commission 
distributions [7]. Figure 2 compares one of the worst 
performing models (topography alone) with one of the best 
performing models (topography and climate plus clustered 
NDVI) for Ergaticus ruber. The visible difference in 
predicted distribution patterns graphically demonstrates the 
importance of good predictive datasets. 

 We plan to extend these analyses to broad suites of 
species in numerous regions of different scales and 
resolutions. Should further results validate these initial 
findings, datasets easily derived from AVHRR, MODIS, or 
similar sensors will be able to be used as direct input to 
ecological niche models, bypassing the laborious, costly, and 
error-prone process of creating land cover maps. 
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Figure 2.  Two distribution prediction maps for Ergaticus ruber. 
Top:  topography alone.  Bottom:  topography and climate plus 
clustered NDVI.  Darker tones indicate higher levels of coincidence. 
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