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Abstract - This study used Support Vector Machines to classify 
multiangle POLDER data. 
 

I. INTRODUCTION 
 
Boreal wetland ecosystems cover an estimated 90 x 106 ha, 

about 36% of global wetlands, and are a major source of trace 
gases emissions to the atmosphere [1].  Four to 20 percent of 
the global emission of methane to the atmosphere comes from 
wetlands north of 40°N latitude [2].  Large uncertainties in 
emissions exist because of large spatial and temporal variation 
in the production and consumption of methane.  Accurate 
knowledge of the areal extent of open water and inundated 
vegetation is critical to estimating magnitudes of trace gas 
emissions.  Improvements in land cover mapping have been 
sought using physical-modeling approaches [3],[4], neural 
networks [5],[6], and active-microwave [7], examples that 
demonstrate the difficulties of separating open water, 
inundated vegetation and dry upland vegetation.  Here we 
examine the feasibility of using a support vector machine to 
classify POLDER data representing open water, inundated 
vegetation and dry upland vegetation.  

 
II. METHODS 

 
Airborne POLDER sensor [8] data were collected in the 

red (665 nm) and infrared (865 nm) spectral regions on 21 
July 1994 over the Southern Study Area (SSA) of the BOReal 
Ecosystem-Atmosphere Study (BOREAS) centered at 54ºN, 
105ºW in central Saskatchewan, Canada.  After resampling 
and registration, each POLDER pixel represented a ground 
area of 150m x 150m that was observed in each of 16 different 
view directions spaced at 5° intervals in the principle plane 
±50º about nadir.   

 
The forest cover map used as ground truth, derived from 

forest cover data provided by the Saskatchewan Environment 
and Resource Management, Forestry Branch-Inventory Unit, 
indicated the land cover consisted of fens (6.9%), black 
spruce (27.4%), jack pine (13.6%), and aspen (23.5%), 
grasses, mixed land use, and open water. 

 

The Support Vector Machine (SVM) classifier [9] was 
designed to meet two objectives, i) that it is accurate when 
assessed against a test set and ii) that we can deduce from its 
design a level of confidence that the trained machine will 
accurately classify comparable data outside of the training and 
testing sets.  Our analysis was restricted to four candidate 
polynomial support vector machines: linear, quadratic, quartic 
(4th degree) and septic (7th degree).  Machines were trained to 
discriminate open water from all other classes "without 
penalty", that is, to seek to minimize the empirical risk 
function allowing no error in classification. All machines were 
trained on 25% of the classified data from each of the two 
wavelength bands, red and near infrared, of the POLDER 
data. 

 
III. RESULTS AND DISCUSSION 

 
Table I provides estimates of the Vapnik-Chervonenkis 

(VC) dimension and the mean probability of misclassification 
when applied to subsequent data as well as a conservative 
estimate for the upper bound on the 95% confidence interval.  
While higher order machines provide better training results, 
they generally prove less robust when applied to subsequent 
data.  The loss of robustness is seen by the growth of the VC 
dimension; the loss of confidence is manifested in the growth 
of the upper bound of the confidence interval.  The balance of 
empirical risk versus generality favors the linear machine, 
with an estimated mean probability of misclassification of 
subsequent data of a remarkable 2%, but with a 95% 
confidence interval for the conservative upper bound of 
68.23%.  Both red and near infrared spectral bands are nearly 
equal in predictive ability. 

 
By establishing a classifier solely based on the presence or 

absence of open water, the machines were less able to 
discriminate inundated vegetation from dry vegetation for 
either red or infrared bands.  Accurate discrimination of 
inundated vegetation was achieved only by overfitting the 
training data, thereby sacrificing robustness of the support 
vector machine.  After open water has been filtered from the 
image, a support vector regression machine, rather than a 
classifier, might provide a basis for discriminating the 
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remaining community types. Alternatively, machines that use 
multispectral multiple view direction bands may provide 
sufficiently more information about the surface cover that 
accuracy is improved. The results also demonstrate that the 
septic 7th  degree machine was the most robust of the three 
polynomial machines for each of the three binary classifiers of 
interest. 
 

IV. CONCLUSIONS 
 
This study reports results of applying Support Vector 

Machines to classify land cover types using multi-angle 
POLDER data.  These results suggest that SVM can be 
applied to extend our analysis to classify additional types of 
inundated vegetation and non-inundated vegetation by 
masking open water after it is classified and/or adding 
additional POLDER spectral bands to the multiple view angle 
data set.  
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TABLE I.          . 

                                                SUPPORT VECTOR MACHINE (SVM) CLASSIFICATION RESULTS                                          . 
                                          SUPPORT VECTOR MACHINE                                          . 
             linear                      quadratic                quartic                      septic          . 
                                                          Spectral Band                                                           . 
      red           nir           red           nir           red           nir           red           nir     . 
support vectors 4 3 5 6 5 5 3 5 
Margin 1.661 1.648 3.857 2.170 16.71 3.461 112.5 5.490 
Bounding Sphere 8.59 13.0 73.9 196. 5467 3.856e+4 4,316,800 2.343e+8 
VC Dimension 15 17 21 137 80 3877 1365 170,545 
Mean Probability of Misclassification (%) 2.67 2.00 3.33 4.00 3.33 3.33 2.00 3.33 
95% Confidence Interval Upper Bound (%) 61.52 68.23 73.41 100 100 100 undefined 100.    . 
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