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Abstract— In this paper, we dealwith the problem of extracting
meaningful textural features leading to good segmentationson
satellite images of natural ernvironments. Standard texture fea-
tur es using graylevel co-occurrence matrices have been widely
applied on remote sensedimages but they impose limitations
(due to finite window sizes)as poor spatial localization. We have
generalizedthe definition of texture features using a multiscale
framework, in order to take advantageof multiscale properties of
natural images.The new definition impr oves spatial localization
and the relevance of the parameters. We then investigate the
dependencieamongdiffer ent featuresfor classificationpurposes.
An unsuperised scheme of classification was performed on
differ ent satellite infrar ed images. We seethat natural, chaotic
imagesshould be treated with a differ ent methodology

I. INTRODUCTION

Texture sggmentationis one of the central problemsin
imageprocessingand hasgiven rise to an abundantscientific
literature[11]. Techniquesvhich usetextural (combinedwith
spectral)informationareamongthe methodswhich have given
the bestresultsin satelliteimagery[12].The main problemin
the segmentationof natural environmentimagesis the large
variability of texture characteristicover them.

Segmentation of images is usually performed in two
stageq9]. In a first stage,featurescharacterizinghe texture
are calculated.In a secondstage,thosefeaturesare usedto
determineuniform regions over the image.The main purpose
of texture featureextractionis to find relationsamongpixels
belongingto a similar texture. As satellite images display
fine-grainedtextures, a statisticalapproachis often adopted
for remotely senseddata: statistical measuresf the spatial
distribution of graylevels are computed.The most common
method consistsin computinglocal co-occurrencematrices
representingoint probabilitiesof graylevel pairs[8] andfrom
that to derive some statistical measureq13]. Classification
schemedasedon thosemethodgprovide goodresultsin cloud
classificatior{13] [7] or landcover sggmentatior[5], andshav
also good performanceon benchmarkimages[11].

In this paper we focus on the use of multiscale textural
featuresfor the sggmentationof infrared imagesof natural
ervironments. We showv the limitation of a classification
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schemeon meteorologicalimages,as the featuresappearto

be mutually functionally dependentin the next section,we

introduce the conceptof multiscale textural featureswhich

generalizethe classicaldefinition. In sectionlll, we present
measuresf functionalcorrelationbetweenfeaturescomputed
on Landsat,Spotand MeteoSatinfrared images.We perform
then a classicalK-Means classificationon thosedatain sec-
tion IV andwe interpretthe differentresultsin sectionV.

Il. MULTISCALE TEXTURAL FEATURES

Information in a natural image is not containedat only
onescale:multiple objectsof differentreal and apparensizes
appeatintervowedin a complicatedmesh.lt is thusnecessary
to relate somehav information from the different scalesof
resolution.Approachedasedon co-occurrencenatrices,gen-
erally obtainedover fixed size windows, needto be extended
in orderto acquiretextural featuresat several scaleg[10].

We proposeto generalizeco-occurrencein a multiscale
framawvork by introducing a non-uniform, scale-ivariant
weightingfunctionin the computatiorof spatialdistribution of
grey-levels variations.The standardway for the evaluationof
gray-level distribution consistsin defining small (overlapping
or not) windows of predefinedsize around each pixel, then
computing the relative frequeny of the obsened pairwise
graylevels and finally calculating a representatie feature
(GLCM approach[13]). In our approachjnsteadof defining
a small window around the pixel z, we considera rather
large window W (x) but eachpair of graylevels is assigned
a weight so that pairs of pixels further and further away will
contribute less and less. In sucha way, a good localization
is obtained,even for large windows. We definethe multiscale
joint probability p}) () of agraylevel pair (i, j) by: p}} () o
Dy eW (@) I(y)=i,I(y)=; 1T — (¥ +¥")/2|7%. We choosethe
exponenta = 2. Due to the scaleinvariant characterof this
weightfunction,theresultdoesnot in principle dependon the
sizeof thewindow [6], althoughwe limit the calculationgo a
21x21 window to avoid divergencesndto fastencalculations.
For that reason the computationof the featureg13] doesnot
dependeither on ary fixed scale:it is scaleinvariant. This



their functional correlation)[3]:
L(F,F7)=H(F)-H(F|F') 1)
L(F,F") =V(E[F | F'))/V(F)
wherethe functionsH, E andV standfor entroyy, expectation
and varianceand where the symbol | denotesconditioning.
The closerI; andI, areto their maximumvalues(H (F) in
the caseof Iy, 1 in the caseof ;) the more dependenthe
featuresare, while valuesof I; and I closeto zero imply
independeng of the features.

| featuresF | cont. | homo. ] corr. | ener | var. |
M data: I, | 1.416| 0.987 | 0.280 | 2.621 | 1.533
_ _ _ eteoSadata: |-y, 756 | 0.668 | 0.331| 0.899 | 0.744
Fig. 1. Examplesof multiscaletextural featurescomputedon an infrared

MeteoSatimage. From top to bottom, from left to right: original image, Spotdata: I, | 0812] 0517 | 0.236| 1.622 ] 1.104
contrast,correlation,homogeneityenegy and entropy. I, [ 0.402] 0.389 | 0.202 | 0.680] 0.533

(a) Mutual information I; (in bits) and correlationratio I of different

featuresF with respectto the entropy.
methodprovidesa betterspatiallocalizationthanthe classical
methodsand reducesthe overestimationin feature (Fig. 1).
Moreover, for somefeatureqlike entropy, enegy or contrast),
assumingstatistical translationalinvariance,it is possibleto
considermaiginal probabilitiesp! (z) o« Doy I(y)=i |z —y| @
(GLV approacH2]) insteadof joint probabilitieswhatleadsto ™
featuresattaininga betterperformancean spatiallocalization, -
significang, computerstorageand computationtime. o
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I1l. CORRELATION IN FEATURE SPACE

By calculatingmary featureswe form a multidimensional
classificationspacewhich helpsto determinethe classeach
pixel belongsto. Decidingwhich featuresarethe mostrelevant .
hasbeenthe focusof mary researctefforts [12]. A selection ~ ° * = = # = ¢
processs usuallyappliedon the featurespacewhich consists - S )
in determiningthe mostdiscriminanttextural features[7] [4]. &tggggtﬁ(’%ﬁ‘;ﬂ gf;”sb;g? gztgf(gg?tgﬁ.sﬂg; rcegﬁﬁgtstt? bt rf]%r_

It reducesthe cost of classificationby reducingthe number mogeneity;Right: enegy.
of featuresthat needto be collectedand provides a better
classificationaccurag. Fig. 2. Functionalcorrelation betweenfeatures,computedon samplesof

However, these corventional methodstreat the different MeteoSat(20 1350 x 460 images)and Spotdata(20 1000 x 1000 images).
featuresas independentnes. The selectionof uncorrelated
featuresis necessaryo performefficient segmentationlin [1],
the authorsconcludethat enegy and contrastare the most
efficientin termsof visualassesmengind,hence they recom-
mendthe combineduseof thoseparameter$or discriminating
textures. Other studies[5] shav that enegy, contrastand
correlationare the lesscorrelatedparameterand that enegy
is the besttexture parameterin [12], homogeneityis chosen
asthe mosteffective textural parameter

We investigatehere the statistical meaningof six textural
features:entropy, enegy, contrast,variance homogeneityand
correlation[8]. We measurgheir mutualdependencieis order
to excluderedundant)esssignificantfeatures For arny couple
of featuresF, 7' we will calculatethe mutual information IV. INTERPRETATION FOR CLASSIFICATION PURPOSE
ILi(F,F") (which is a measureof the independeng of both Using setsof computedtextural features,we can perform
variables)andthe correlationratio I, (F, F') (which measures a segmentationof infrared imageswith a classicalK-Means

100-|

50-|

Thesemeasuresreperformedor differentkindsof infrared
images:SpotNIR imagegTOC channel3, 0.79um—0.89um),
LandsatNIR images(band 4, 0.76um — 0.90m) and also
MeteoSathermallR images(10.5um—12.5um). In Figure2,
we presenthe valuesof I; andI, for somefeaturescomputed
on large samplesof suchimagesand the correspondingcon-
ditional distributions. The dependencdetweenhomogeneity
contrast,varianceenegy andentrofy turnsout to be stronger
for MeteoSatdata than for Spot data. For Spot data, this
dependenceés multivalued. Correlation and entropy are the
less mutually dependenfeatures;however correlationis not
very significantasit poorly locatesstructureg(Fig. 1).



method [9]. The resultsof the segmentationson land-cover

images can be comparedwith those basedon all spectral
channelgFig. 3); textural featuresallow to characterizesome
well textured regions (fields and water) but have difficulty to

extract small textured areags(cities). For MeteoSaimagesthe

segmentationsare not so good, and they are not improved

whennew featuresareincludedin the classificationprocedure
(Fig. 4).

Fig. 3. Left: Landsat(top) and Spot (bottom) NIR land-caver images.
Middle: K-Meansclassificationwith spectralfeaturesRigth: K-Meansclas-
sificationwith textural features.

V. DISCUSSION AND CONCLUSION

We have investigatedhe mutualdependenciesf multiscale
featureswhen computedon two types of infrared images:
land cover images (from Spot and LandSat satellites) and
higher atmospherdemperaturamages(from MeteoSat).We
seethat for land-cover imagesthe different textural features
aredependenbnthe underlyingregion, whatallows to classify
thoseregions by applying standardalgorithms (as K-means)
in the featurespace.This dependencef the featureson the
spatialregion is evidencedby the weakfunctionaldependence
among features (measuredby the mutual information and
correlation ratio) and by the multi-valued characterof the
conditionaldistributions (as differenttexturesare represented
by differentclustersin featurespace).

On the contrary seggmentationmethodsbasedon texture
extraction do not work when appliedto MeteoSatIR data,

Fig. 4. Left: MeteoSatIR image. Middle: K-Means classificationwith
textural features Right: sgmentationobtainedwith entrogy featureonly.

a fact already pointed out by Gu [7] and Ebert [4] in the
classificationof clouds.One of the reasonf this failure lies
in the fact that those methodsassumeregularity conditions
that are not satisfiedby MeteoSatimages(thoseimagesare
relatedto thermodynamicapropertiesof a turbulent, chaotic
flow). A more detailed analysis of the featuresshaws a
remarkabledegree of mutual dependeng among features,
togetherwith narrow, uni-valued conditional distributions of
pairsof features.This dependeng meansthat all the features
are sensitve to the same property of imagesand multiple
feature classificationdoes not provide nev meaningful fea-
tures. Henceforth,the segmentationhasto be carried out by
meanswhich take into accountthe propertiesof the flow, as
for instanceperformingmultiscalesingularity analysis[6].

To conclude,the resultsshavn so far meansthat, unlike
what is discussedn [1], thereis not an image-independent
methodologyfor featureselection,andin particularclassifica-
tion techniqgueon multi-featurespaceglo not work efficiently
for every kind of data disregarding inherent structure of
images.Methodologieswhich are relatedto the propertiesof
the object of study speciallyin the caseof natural, chaotic
images,shouldbe considered.
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