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Abstract— A visual information mining concept is proposed
for spatio-temporal patterns discovery in remotely sensed image
time-series (ITS). An information theory framework is adopted
to first model information content. It results in the inference
of a relevant directed graph characterizing ITS. Then the user
conjecture is modeled via visual information representations :
similarity measures between sub-graphs, which represents spatio-
temporal events are derived and included in an interactive
learning and probabilistic retrieval procedure of user-specific
event-types. The present concept for ITS mining is demonstrated
on multitemporal SPOT data.

I. INTRODUCTION

During the last decades, the imaging satellite sensors have
acquired huge quantities of data enabling the elaboration of
spatio-temporal databases. Image time-series (ITS) contained
in them are complex objects containing interesting informa-
tion. However, our capability to access and store large volume
of data has highly exceeded our capability to extract the
relevant information from the data. Therefore, ITS information
systems are needed to bridge the gap between database theory,
which is not adapted to manipulate temporal and pictural
multidimensional data, and computer vision, which does not
offer query possibilities. To cover such a broad problematic, a
visual information mining concept is proposed to help a user
to explore and understand spatio-temporal behaviors present
in ITS.
The article begins by presenting unsupervised methods for
coding the information content in the observations. Thus, the
dynamics of the feature space (FS) is modeled which results
in the inference of a relevant directed graph representation,
characterizing ITS. It continues by describing sub-graphs,
contained in the graph, with model parameters. Combinations
of the parameters correspond to semantic descriptions of
spatio-temporal events. In this perspective, a distance model
between sub-graph parameters is developed to enable user
specific similarity measurements. Then, a Bayesian interactive
learning on graphs is presented to enable reasoning on ITS.
The learning is performed by the incremental definition of
a spatio-temporal pattern type via user-provided positive and
negative sub-graph examples. In parallel, the interactive search
of spatio-temporal events is guided by accuracy probabilistic
measurements derived from the current state of learning via
the user positive and negative semantic. Finally, experiments
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performed on a SPOT ITS, demonstrate the presented ITS
mining concept.

II. GRAPH REPRESENTATION OF IMAGE TIME-SERIES

Image time-series are stochastic processes which have dif-
ferent representations in a multidimensional space compris-
ing two spatial axes 6 , a time axis 7 , and several feature
dimensions 8 (radiometric values, texture parameters,...). The
multidimensional signal denoted by 9;:$60<=7#<#8?> can have various
interpretations depending on its representations. The spatio-
temporal representation 9@:�60<=7#<#8?> is simply the time-series of
images. Denoting by A the number of time samples, the mul-
titemporal (MT) feature space representation 9CBD:18FE � <HG�G*G�<
8FE � >
is a multidimensional space composed by the union of all the
time-localized (TL) feature components I08?E -
JLKNMPORQ <LA�S�T .

A. Modeling and clustering multitemporal and time-localized
feature spaces

The goal is to understand the evolving scene. Moreover,
the MT feature space contains the global information on the
image time-series. Therefore, the dynamic of image structures
and spatial objects is analyzed in the multidimensional space.
Figure 1 illustrates the analysis [2]. The signal is modeled



and clustered in different FS representations. In particular, TL
representations are considered in order to study the evolution
in time of image structures. They are obtained by projecting
the multidimensional FS on a TL feature component 8 E - ,
using a defined projector operator. Thus, for each time 7 � , a
TL feature space representation is obtained. When modeling
the MT feature space, dimension reduction techniques such as
principal component analysis or projection pursuit are used
to condense the information contained in the MT feature
space into a sub-space of lower dimensionality. They provide
an efficient solution for parameter and model inference in
multidimensional spaces with limited sample sizes. Stochastic
models are required to learn about this multidimensional
signal. A Gaussian mixture model is able to approximate
efficiently any probability distribution function (PDF); thus
it is well suited to model PDF of signal 9 BD:18FE � <HG�G*G�<
8FE � > for
which no prior knowledge is available. The Gaussian mixture
modeling measures similarities used for clustering the FS.
Each Gaussian will be considered as a grouping of similar
data points and thus, will define a cluster. In order to perform
clustering without any constraints neither on the number of
Gaussians present in the mixture nor on their parameters,
a minimum description length criterion has been used to
select the best model among all the possible Gaussian mixture
configurations [2].

B. Inference of the dynamic feature space modeling

Each MT cluster has a particular behavior while observing
its evolution into successive TL representations. For example,
some MT clusters may share the same TL cluster at a given
time and split or/and merge with other MT clusters in the
future. The problem is to quantify, at a given time, the
similarity of these projected MT clusters with the goal to
infer temporal relations. By associating the TL and the MT
information, the problem of quantifying the distance between
projected MT clusters can be reformulated in defining an
information measurement, able to compare two different mod-
els and learn about their similarity. Using Kullback-Leibler
divergence, which is relevant for these model comparisons,
the dynamic FS modeling is inferred resulting in weighted
MT cluster trajectories formalized trough TL evolution of
clusters [2]. Therefore, this analysis results in a graph

�
representation of 9 B :$7#<
8?> characterizing the dynamic clusters.

C. Graph characterizing the dynamic clusters

The directed graph
�

is a specific multidimensional tempo-
ral feature representation which characterizes the trajectories
of the dynamic clusters. The information is condensed in its
vertices and edges. A vertex is representing a TL cluster and
is related to a given MT Cluster. It is characterized by a pixel
weight � , Gaussian parameters ��� :�� <
	F> and a divergence
measurement. Moreover, spatial information is contained in
the corresponding TL classes. An edge, representing the
evolution of the MT cluster between two image samples, is
characterized by a time sampling delay � , a pixel flow �
, Gaussian parameter evolution 
 :���> and mutual information

��� . Furthermore, the graph is composed by the union of all
MT evolutions. Thus MT clusters and classes are assigned to
vertices and edges.
Unsupervised methods for coding the information content in
the observation results in a graph characterization of an ITS.
Therefore, the graph can be included in an information-mining
system enabling to add the user semantic which helps for
interpretations by supervised methods which are using relevant
information.

III. SIMILARITIES BETWEEN SUB-GRAPHS

Sub-graphs, contained in the graph, are statistical models
for spatio-temporal processes, which at their turn describe
physical changes in the observed scene. The sub-graphs are de-
scribed by model parameters and combinations of the param-
eters correspond to semantic descriptions of spatio-temporal
events. Thus, a parametric distance model between sub-graph
is developed to enable user specific similarity measurements.

A. Parametric distance model for sub-graph similarity

Inexact graph matching has been proposed in [1]. It enables
the evaluation of a similarity measurement between sub-
graphs. The idea is to transform one of the graphs into the
other one by assigning a cost to each distortion. Thus, a
cost is assigned to each vertex or edge addition/removal.
Graphs characterizing ITS are supporting several attributes
on their vertices and edges. Thus, a sub-graph distance is
defined by adapting the inexact graph matching algorithm
into a parametric model, weighting the different attribute
contributions.
Denoting by � � � I�� �� T and � � � I�� �� T the vertex sets of
sub-graphs

� � and
� � , and denoting an extra set of vertices

by ��� I�� � T , a mapping function ��� I��@T composed by a
given combination of elementary mapping functions ����� ���
� ��� � � �"! � is defined. Note that � is an injective function.
A cost #%$ :&��:�� �� >'�(� ���) > is assigned to each elementary
transformations. The cost function depends on the vector
parameter 8*� I,+.-DT and is composed by a weighted sum
of similarities between vertices � �� and � ���) and related edges.
Preserving notation of paragraph II-C, when considering only
incoming edges related to a node � � , flows and Gaussian
parameter evolutions related to edges are denoted by �0/ - and

,/ - :���> . The cost is defined by the expression

# $ :���:�� �� >1� � ���) >1�2+ �43 :�� / �- <5� /46879 >;:�+ �,3 :�� / �- <5� /<6&79 > (1)

:=+�> 3 :?� / �- <5� /<6&79 >@:A+�B 3 :C
 / �- :���>#<

 /<6&79 :���>L>
where 3 :=G > represents a distance functions which is either a
difference for a scalar or a similarity measure between PDFs
such as Kullback-Leibler divergence. Because time sampling
delay and mutual information are characterizing all edges of
a given MT class in a given interval, it must be added in the
cost function only once per time interval. Furthermore, when
considering 2 MT cluster at a time, their distance denoted
by 
EDGF :C��> is evaluated using Gaussian parameter similarity
and reported once per time sampling in the cost function.



Thus, when satisfying the given conditions, the following
terms +�� 3 :&���D> : +�� 3 :�� > : +�� 3 :�
,DGF :C��>=> are added to
equation (1). The sub-graphs similarity is then defined, for
a given vector parameter 8 , by finding the less expensive
elementary mapping function combination over all possible
mapping functions:� $ : � � < � � >1�����
	� /
� � #%$ :���:&� �� >1� � ���) > 3 G (2)

In order to estimate the minima, an optimization procedure
is performed searching a minimum cost path in a tree struc-
ture containing all possible mapping functions configurations.
Because of the combinatorial explosion of possible configura-
tions, the tree is regularly pruned during the search, with the
potential drawback that the optimization can lead to a local
minima.

B. Semantic description of spatio-temporal events

Similarities between sub-graphs have been defined using a
parametric distance model. As each term of the cost function
characterizes a physical behavior in the observed scene, one
can attach a semantic to each component of equation(1).Thus,
in order to assign a physical meaning, the different components
are reviewed sequentially. Factor + � is weighting the pixel
quantity concerned by the event. Factor + � is weighting the
temporal feature value characterizing the event. Factor + > is
weighting the pixel exchanges during the event. Factor +.B is
weighting the feature value change. Factor +�� is weighting
the inter-class change during the event. Factor +�� is weighting
the delay in which occurs the event. Factor +�� is weighting
the MT class interactions. However, tuning correctly these
parameters in order to define a semantically consistent distance
model, might not be obvious for a user. Therefore a supervised
learning procedure is needed to estimate the parameter vector
characterizing a specific semantic.

IV. BAYESIAN INTERACTIVE LEARNING ON GRAPHS

A concept of interactive learning and probabilistic retrieval
of user-specific event-types is developed for reasoning in ITS
using visual representations. The interactive learning scheme
has been developed in the framework of a concept presented
in [3].

A. Mining a sub-graph collection

Let the graph
�

be decomposed into a collection of �
sub-graphs I � - T . The similarity measure of equation (2)
between a given sub-graph

���
and a sub-graph

� - can be
rewritten as

� $ : ��� < � - >"��� � ��� - : ��� < � - > , where
��� - : ��� < � - >

is the contribution related to the parameter + � , to the cost
function. For a particular sub-graph

� - , the parameter + � is
assumed proportional to the partial cost function

� � - : � � < � -5> .
Therefore, the learning step is performed by the incremental
definition of a spatio-temporal pattern type via user-provided
positive and negative sub-graph examples. Let the positive
and negative semantic of a user be denoted by �G/ and ����/ .
From these examples, we infer probabilities of a Bayesian

network, based on a Dirichlet model, that links user interest
to specific parameter PDFs �@:
8����G/�> and �;:18�������/ > . Then,
the minimum mean square estimator is used to estimate the
parameter vector.
In a first step, let us consider only the positive semantic
parameter learning. Using the new estimation, the distance
model function

���
$! " $#&% : � � < � -5> can be evaluated and a graph

likelihood probability can be assigned to each sub-graph of
the collection according to its evaluated distance. As the
search tree structure for the calculation of the distance model
have been saved the computation of the distance model is
not intensive, which enables the interactivity of the learning
process. The likelihood probability of a given sub-graph

� -
conditioned by the user semantic �G/ is defined by

�@: � - ��� /5>"��')( � � $� " $#*% : ��� < � - >,+ (3)

where ' :=G > is a linear operator inversely proportional, mapping
the similarity function values into probabilities. A similar
strategy is adopted for the estimation of the sub-graph likeli-
hood probabilities �@: � - ������/ > conditioned by the negative
semantic. Note that the probabilities are dependent of the
negative and positive reference graphs

�-�
, which are different.

Then,using the Bayes rule, we calculate the posterior proba-
bilities �@:.� / � � -5> as

�;:/� / � � -�>"� �;: � - ����/5>0�@:.��/�>�;: � - > (4)

with the graph priors
� - being �@: � -5>1� � / �@: � -1�2� / >0�@:/� / >

where the sum over � is computed using positive and negative
semantics. Thus, assuming a uniform prior for the semantics,
using equation 4, the posterior probability of a graph condi-
tioned by the semantic �G/ can be calculates as

�@:/� / � � - >1� �;: � - ����/ >�;: � - ����/ >@:3�;: � - �2����/ > G (5)

Therefore, the collection of sub-graphs can be sorted, in
ascending order, according to posterior probabilities. Changing
of reference graphs must be done regularly when the user
adopts a browsing strategy for his search. The interactive
training can be iterated until satisfaction of the user.

B. Evaluating the search quality

The search of spatio-temporal events is guided by a measure
a strength of stochastic links which can be computed for each
parameter. This measure can serve to evaluate the strength
of each characteristic of the similarity function. Denoting by4 :=G5� G > the Kullback-Leibler divergence, the strength of

stochastic links is defined by
4 (,�;:�+ � ��� /�>6�7�;:�+ � �2����/ >,+ .

V. PRACTICAL APPLICATIONS

Experiments were performed on a temporal database com-
posed by 38 superposable 2000x3000 pixels SPOT images
which were obtained by daily acquisition and by filtering
the cloud-free images in a period of 286 days. The temporal
sequence displays a dynamic scene acquired in the East of
Bucharest (Romania). A spatial subset of 200x200 pixels is



Fig. 2. 7 most probable graph patterns characterizing cloud apparitions

Fig. 3. Cloud search results. Above, probabilities of the 7 most likely
spatial class with associated time-windows. Below, retrieved image samples
containing clouds

Fig. 4. Harvest reference pattern together with its spatial class & search
probabilistic links

Fig. 5. Harvest search results. Above ITS between day 16 and day 125.
Below, Probabilities of the 5 most probable spatial classes with associated
time-window

considered. The features are spectral reflectances.
The first step was completed by the modeling and the clus-
tering of the MT and the TL feature spaces resulting in
the inference of the graph. Then, an interactive learning
step has been performed using a Java visual interface which
displays, in a synchronized way, the ITS, the graph, the
spatial TL and MT classes. Two different searched semantics
are presented in this paper : cloud apparitions and harvest
phenomena. A first training was performed using as a reference
the � E�� cloud pattern in figure 2 which is a cloud shadow
partial covering of a field. A time-window of 3 samples was
used and time delays were not considered in the similarity
function (c.f. section III-B). Figure 2 displays the 7 graph
patterns of highest probability resulting from the search .
Figure 3 displays the corresponding MT spatial classes to-
gether with their probabilities, their time coordinates and the
corresponding images where clouds appear. The probabilistic
links clearly demonstrate that the cloud apparition semantic
is highly characterized by mutual information (low), a little
by radiometric signature changes (as the change depends on
the occluded object radiometry), pixel exchanges and weights
but not by radiometric signatures since we are searching for
clouds and shadows. A second training was performed using a
harvest semantic. The reference graph pattern is presented in
figure 4. Since green and blue spectral signatures are similar,
only 2 spectral reflectances are displayed. A time-window of
5 samples was used and time delays were not considered
in the similarity function. The probabilistic links show that
the harvest phenomenon is characterized almost equally by
all the measures presented in section III-B. Figure 5 displays
the search results. Above the ITS between day 16 and day
125 is displayed. Almost all the retrieved harvests occurred in
this period. Below is presented the resulting 5 most probable
spatial classes together with their time-window. A probability
is assigned to each spatial class presented in its given time-
window.

VI. CONCLUSION

This work is an attempt to solve the complex problem of
spatio-temporal reasoning in image times series. A trajectory
modeling of dynamic clusters of the image time-series is
proposed to extract information related to evolving image
structures and characterize the global spatio-temporal signal.
The resulting graph is included in an interactive learning and
probabilistic retrieval procedure of user-specific event-types.
The experiments demonstrate the relevance of the method by
the interactive characterization of spatio-temporal events.
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