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_ Abstract—A flexible method of introducing a SAR vegetation  formulated using radiometer or SAR measurements. It is im-
o ol v, 01 {0l eeve] 419, portant o ote that under vegetated concitons, the radiometri
sensitivity at each pixel, the vegetation index is incorporated on rétrieval algorithms were found to provide more accurate soil
a pixel by pixel basis using the water cloud model. An approach Moisture estimates as compared to the algorithms based on
for minimizing the need for ground measurements, by remotely SAR data. However, one of the major drawbacks associated
gﬁ“mféitgg ”}iepar%mg;eer: ;fgé‘;e?s fgr tngd"fgeéa\‘;iggd”:i%brﬁe with radiometers is their low spatial resolution. Even a high-
S/—\gFg data and thg vggetation correctiorF:F\)Nas found to reduce the rgsolutlon raQIometer. such as the, AVHRR (Advgnced Very
rms error in the model. High Resolution Radiometer) provides a resolution of only
1.1 km. In comparison, SAR data has high spatial resolu-
. INTRODUCTION tion and provides fine-scale vegetation information within

e lower resolution radiometer footprint [3]. As a result,
Future spaceborne SAR systems such as the RADARSA—I{% nificant interest lies in developing models capable of using

ALOS PALS.AR’ EMISAR. and_HYDROS promise to pro_wdeSAR data for accurate estimation in regions with considerable
large quantities of polarimetric SAR data, thus Ieadmgati

the feasibility of alobal Soil st timati lob mounts of vegetation, especially when a radiometer is an
e feasibility of global soil moisture estimation on a glo djunct instrument.

scale. There is significant interest in the ability to remotely A discussion of the different types of algorithms for soi
estimate soil moisture content due to the pivotal role it plays . . . .
P piay isture retrieval and their drawbacks can be found in [2]. A

in understanding agricultural and ecological processes ang

the nature of global change. Consequently, it is importaﬁ?mmOn approach used for developing models for vegetated

to develop models for accurate soil moisture retrieval fro@grgjggiﬁ]sn:z;gl 'n_tl_rﬁgucfegggft\?vté?s ?sﬁetf;zelgtoor?nae)si?:irllsr
polarimetric SAR data. : P

Models for soil moisture retrieval were originally develope&Oncept and the empirical model of Dubois et al. [1] is selected

. o as the most suitable choice for our application [2]. The Dubois
for bare soil areas. However, it is important to be able {0 . .
. . : . . .~ model was developed using radiometer-scatterometer data,
estimate soil moisture in vegetated regions as well. While the” "~ . ; .
. : .—_making it more suitable for vegetated regions as compared
vegetation effects have been successfully introduced into_a

¢ g . ; : . to other models such as the Oh [4] and the Shi models [5].
ew of the existing soil moisture retrieval algorithms, more
work has to be done to improve the effectiveness of using a
vegetation index in Dubois’ empirical model [1]. I1l. M ODELING SOIL MOISTURE
This paper primarily focuses on improving the method of

introducing vegetation correction into the Dubois model. In The modified empirical model developed by incorporating
addition, the concern of preserving the essence of “remqfggetation effects into the existing Dubois model was found
sensing” by estimating the vegetation parameters remotedy yield a significant increase in the estimation accuracy in
rather than using ground based measurements is addresggfbtated regions [2]. However, the model is unable to achieve
here and a possible solution is discussed. the degree of accuracy obtained by the vegetation model
proposed by Bindlish et al. [6].
The primary goal of the present work is to improve upon
Most of the models developed for soil moisture estimatiame methodology used to include the contribution of vegetation
in both bare and vegetated regions were based on of invertingp the Dubois model. An attempt is also made to propose
direct models (backscatter as a function of soil moisture@) systematic approach for remotely calculating vegetation
in order to estimate the surface parameters from the givparameters required in the vegetation index, thus avoiding
radar measurements. These empirical models were genertdljious ground measurements.

Il. BACKGROUND



A. Incorporating a vegetation index into the existing modelwherek = 27/X is the radar wavenumbeg is the surface

The Water-Cloud model proposed by Attema & Ulaby i,ﬁoqghness,L is the surface correlati.o.n length aridis t_he
1978 [7] provides a simple approach to include the contribficidence angle. The Fresnel reflectiviy,, can be obtained
tion of the vegetation as well as the soil in the backscatterifi¢m the dielectric constant;, using [4]:
coefficient. According to the model, the total power scattered 1 — Ve
at a co-polarized channel ppy,, is the incoherent sum of 1+ Ve

contribution of the vegetatiom;,,,, and that of the underlying . . L i i

soil, 0° ., which is attenuated by the vegetation layer. i he original Dubois model is initially implemented to obtain

order Egﬂinclude the effects of orientation and geometry &f° estimate of the surface roughness and the dielectric constant

the vegetation, Bindlish & Barros subsequently modified th[€auired in (6) and (7). The surface correlation length is

model by introducing the vegetation correlation lengtt{g]. °Ptained from ground measurements. _

The modified water-cloud model thus expressgs as: In the modified empirical model [2], the vegetation effects
were introduced into the existing model only if the average

Iy = (7)

Opp = Oveg T 2ol (1) cross-polarization ratio for a particular site was greater than
with 22— p{-26Wesech} ) —11dB. Based on this train of thought, the adaptive nature
on R Y of the model can be improved by evaluating the vegetation
Tveg = Oveg(l—e™) @) sensitivity on a pixel by pixel basis.
and 00 = Amy cosf (1 —7?) 4) The vegetation-covered soil moisture sensitivity, was

defined by Ulaby et al. [11] as:
where ¢%* is the backscatter contribution of the vegetation y y [L1]

veg

B
corrected for the effects of orientation and geometry of the Sy = Y 8
canopy. The parameterq, is a function of the average (1 + )

distance between vegetation canopies within a pixel,is the \yhere the sensitivity of bare soifjs, is given as:

o

T2 0° .
soil

volumetric soil moisture content;? is the two-way vegetation Sy — 4.34D )
transmissivity, W.. is the vegetation water content kg/m? '
andd is the radar incidence angle. The values ofoy,,, 72 and 02, are obtained using (3), (2)

The vegetation-dependent parametetsand b, determined and (6), respectively. The coefficienD), is determined from
from experimental observations [8], represent the vegetatitdte LMS regression analysis of (5).
scattering and the vegetation attenuation, respectively. AlsoBy examining the limits ofS,, as function of the ratio inside
other vegetation parameters suchVis and o are measured the brackets in (8), it is evident that:
directly at the ground. Consequently, this indicates that the S, ~ 0, for 7206%, < o0l (10)
transmissivity,72, and all the parameters derived from the nd g
parameters, as given in (1) to (4), rely on ground based Y
measurements. This concern is addressed in the next sectime first limit, S, ~ 0, represents the case where the vegeta-
The above modified water cloud model shows that a cofien completely masks the soil, while the second linsit, ~
siderable number of factors are taken into account in ordgg, represents the situation where backscatter is dominated by
to determine a sufficiently correct estimate of the vegetatidhe soil contribution. Consequently, pixels for whish < Sp
backscatteroy,, . may be considered as vegetated and vegetation correction is
In the modified empirical model of [2], the soil backscattegpplied only to these pixels.
oo, is computed by a Least Mean Squares (LMS) regres-
sion between the measured backscatter and the volumefric N ) o _
soil moisture [9]. The regression analysis expresses the soiln addition to the concern for higher estimation accuracy in

backscatter as a linear function of the soil moisture contenf€9ions with larger amounts of vegetation, it is also desired
that a retrieval algorithm should require minimum ground-

Ot = C + Dm, dB (5) measurable parameters, instead it should rely on determining

Here, the Dubois model is used to obtain an initial estimat@€Se parameters remotely. _ .
of the soil moisture content;,. The use of the Dubois UYlaby & El-Rayes suggested a dielectric model for the

model itself at an initial stage to compute the soil backscatt¥ggetation, where the vegetation transmissivity,could be
which is subsequently used in the water-cloud model, leag@culated as [12]: 4o /3y [ /e, (12)

to a significant probability that errors are introduced into the _ . .
modified model given in [2]. whered is the thickness of the laye is the radar wavelength

In the present work, Dobson’s model for the soil backsca‘i‘nd €, IS the vegetation dielectric constant determined by:
75 . 180}

ter [10] is employed to compute? ,, in conjunction with the €y = € + Upy {4.9 +— —j

linear regression analysis. According to Dobson and Ulaby, 1+ jf/18 f

the soil backscatter can be given by the general form:
0%, = 4(ks)? (kL)?cos*d el-(FLsin®)’} |0 12 (6)

soi

~ Sp, for 7202, > 0% (11)

veg
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In the above relationg, is a non-dispersive residual compo+the soil bulk densityp, for each field have not been specified,
nent, f is the frequency in GHzg is the ionic conductivity thus limiting the scope for the computation of the vegetation
in siemens per meter, ang, andv, are the volume fractions transmissivity,72. Instead, the vegetation parameters derived
of free water and bulk vegetation-bound water, respectivelypreviously in [6] are used. This assumption is based on the
According to regression curves obtained from a number oferall similarity of the vegetation types used in [6] to those
experimental data sets, it was concluded that the parameiar®ur current data set. Table | summarizes the vegetation

in (13) can be computed by the following equations: parameters that are assumed for each field.
my = mgp/[1 — mg(l — p)] (14)
e = 1.7 = 0.74my + 6.16m] (15)
vy = my(0.55my — 0.076) (16)
vy = 4.64m./(1 4 7.36m]) (7)
o = 127 (18)

where m, and m, are the volumetric and gravimetric soil &
moisture contents, respectively. Thus, by going backward:;:%l 7
from (18) to (12), the transmissivity;2 can be determined
without the need of the vegetation parametetsandb. ;
As compared to (1) to (4), the only ground measurement
required in the above dielectric model are the vegetatiol
thickness, and the soil bulk density. This is a better choice ey
of model, since the parameterd,and b, are found from re- A S i
gression analysis of suitable, available ground measuremertig. 1. Location of study sites used for the 2001 CV-580 field campaign
The vegetation water content can be determined remotely,

. X . . . Since the CV-580 data is C-band and hyperspectral data is
by using the normalized vegetation qn“ference mdex. (NDV%ot available, the NDVI for a certain field or pixel cannot be
NDVI is a measure of the vegetative cover and is gener

ally calculated from reflectances measured in the visible aﬁ%mp“te”" AS a re;ult, it is not possible to apply the method
- “suggested in Section 11I-B to remotely determiig for the

Srresent data set. Further, it is important to note that the ground

report does not specify the correlation lengthrequired in

(6) and a value is estimated for the each crop type that gives

If NDVI < 0.5 the best vegetation correction to the data.
W, (kg/m?®) = 1.9134 (NDVI)? — 0.3125 (NDVI) (19)

relation between the NDVI andV, is derived in [13] by
optimizing a polynomial function:

TABLE |
If NDVI > 0.5 SITE CHARACTERIZATION FOR POLARIMETRIC DATA COLLECTION
W, (kg/mg) = 4.9857 (NDVI) — 1.5429 (20) CAMPAIGN IN OTTAWA, 2001. SURCE [14], [8], [6]

. . . Sit Land C We (kg/m? A b
Dubois et al. provide a regression curve between the cross e anc ~over (ke /m’) -

o ) 25 Wheat 2.31 0.0018 | 0.138 | 0.96
polarization ratio for L-band data and the NDVI [1]. As a

. . 23 Corn 1.25 0.0012 | 0.091 | 2.12
result, for cases where L-band data is available, the NDVI can b
be computed using this alternate method; else hyperspectral 16 Soyapean 231 000141 0.084 1 0.979
) ' y T ADRI Corn 0.36 0.0012 | 0.091 | 2.12
imagery can be used.
IV. IMPLEMENTATION As in [2], a regression analysis is initially performed on the

The augmented algorithm proposed in Section IlI-A iseasured VV backscatter?,, and the soil moisture content,
applied to C-band, Convair-580 airborne SAR data acquired,, estimated by the original Dubois model. The derived
during a polarimetric data collection campaign in Ottawa. Twinear relationship is further used to determine the sensitivity
different passes (L2P3 and L3P2) of data were collected owrbare soil,Sg, and subsequently the vegetation sensitivity,
the same agricultural area on June 26 and July 19, 2001. The as given in (8) and (9). Also, the application of the
test sites in the image, shown in Fig. 1, include four differemubois model provides the surface roughnessand Fresnel
fields comprising of corn, wheat and soybean. reflectivity, I'g, required to computey, ; at a later stage.

Both data sets include ground measurements of the soiBased on the experimental observations in [2], the vegeta-
moisture content, surface roughness, plant height and tian effects are introduced only into the VV backscatter (HH
vegetation water content. However, the vegetation parametéssysed in the Dubois model without a vegetation correction).
A, b anda, for each vegetation type are not specified in th€he vegetation backscattery;,, and the soil backscatter,

ground truth. Furthermore, the vegetation thickneésand o2 ., for each pixel are obtained from (3) and (6). Further,

soil?



the modified empirical model is now applied on a pixel basesnd subsequently applying the vegetation correction only at
only for the condition when the vegetation sensitivity,, at pixels with a considerable amount of vegetation. Further, an
a certain pixel is less thafg. The vegetation corrected VV approach for the remote estimation of vegetation parameters
backscatter,c? , determined using the water-cloud model i$s discussed.

vv?

finally used in Dubois’ inversion model to obtain the corrected As seen in the results, the proposed model improves the soil

estimates of the volumetric soil moisture,, . moisture estimation compared to the original Dubois model.

Note that the vegetation parameters were not all available

_V' RESULTS ) ) _in the ground truth, hence, they were selected from prior

The plots of the estimated values of volumetric soil mOissxperiments. Also, the correlation length had to be determined
ture for the original empirical model and for the proposegy an arbitrary fitting. As a result, it is difficult to verify the

algorithm with vegetation correction are shown in Figs. 2 a"li{curacy of the model in absolute terms. However, the model

3, respectively. The RMS deviations from the measured valugges provide the structure and degrees of freedom to give

have been computed to estimate the accuracy of each modgliaple vegetation-corrected results when a plausible set of
A 457 line is shown to indicate perfect model correspondencground measurements are available.

A visual comparison of the plots indicates that the intro-
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index into the Dubois model is presented. The modified model
allows the vegetation correction to be applied on a per-pixel
basis by evaluating the vegetation sensitivity at each pixel
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Fig. 3. Soil moisture results with vegetation correction



