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Abstract— A flexible method of introducing a SAR vegetation
index into the Dubois model for soil moisture retrieval using
polarimetric SAR data is introduced. Based on the vegetation
sensitivity at each pixel, the vegetation index is incorporated on
a pixel by pixel basis using the water cloud model. An approach
for minimizing the need for ground measurements, by remotely
estimating the parameters required for the vegetation index, is
suggested. The proposed model is applied to CV-580 airborne
SAR data and the vegetation correction was found to reduce the
rms error in the model.

I. I NTRODUCTION

Future spaceborne SAR systems such as the RADARSAT-2,
ALOS PALSAR, EMISAR and HYDROS promise to provide
large quantities of polarimetric SAR data, thus leading to
the feasibility of global soil moisture estimation on a global
scale. There is significant interest in the ability to remotely
estimate soil moisture content due to the pivotal role it plays
in understanding agricultural and ecological processes and
the nature of global change. Consequently, it is important
to develop models for accurate soil moisture retrieval from
polarimetric SAR data.

Models for soil moisture retrieval were originally developed
for bare soil areas. However, it is important to be able to
estimate soil moisture in vegetated regions as well. While the
vegetation effects have been successfully introduced into a
few of the existing soil moisture retrieval algorithms, more
work has to be done to improve the effectiveness of using a
vegetation index in Dubois’ empirical model [1].

This paper primarily focuses on improving the method of
introducing vegetation correction into the Dubois model. In
addition, the concern of preserving the essence of “remote
sensing” by estimating the vegetation parameters remotely
rather than using ground based measurements is addressed
here and a possible solution is discussed.

II. BACKGROUND

Most of the models developed for soil moisture estimation
in both bare and vegetated regions were based on of inverting
direct models (backscatter as a function of soil moisture)
in order to estimate the surface parameters from the given
radar measurements. These empirical models were generally

formulated using radiometer or SAR measurements. It is im-
portant to note that under vegetated conditions, the radiometric
retrieval algorithms were found to provide more accurate soil
moisture estimates as compared to the algorithms based on
SAR data. However, one of the major drawbacks associated
with radiometers is their low spatial resolution. Even a high-
resolution radiometer such as the AVHRR (Advanced Very
High Resolution Radiometer) provides a resolution of only
1.1 km. In comparison, SAR data has high spatial resolu-
tion and provides fine-scale vegetation information within
the lower resolution radiometer footprint [3]. As a result,
significant interest lies in developing models capable of using
SAR data for accurate estimation in regions with considerable
amounts of vegetation, especially when a radiometer is an
adjunct instrument.

A discussion of the different types of algorithms for soil
moisture retrieval and their drawbacks can be found in [2]. A
common approach used for developing models for vegetated
conditions is to introduce vegetation effects into an existing
bare-soil model. The present work is based on a similar
concept and the empirical model of Dubois et al. [1] is selected
as the most suitable choice for our application [2]. The Dubois
model was developed using radiometer-scatterometer data,
making it more suitable for vegetated regions as compared
to other models such as the Oh [4] and the Shi models [5].

III. M ODELING SOIL MOISTURE

The modified empirical model developed by incorporating
vegetation effects into the existing Dubois model was found
to yield a significant increase in the estimation accuracy in
vegetated regions [2]. However, the model is unable to achieve
the degree of accuracy obtained by the vegetation model
proposed by Bindlish et al. [6].

The primary goal of the present work is to improve upon
the methodology used to include the contribution of vegetation
into the Dubois model. An attempt is also made to propose
a systematic approach for remotely calculating vegetation
parameters required in the vegetation index, thus avoiding
tedious ground measurements.



A. Incorporating a vegetation index into the existing model

The Water-Cloud model proposed by Attema & Ulaby in
1978 [7] provides a simple approach to include the contribu-
tion of the vegetation as well as the soil in the backscattering
coefficient. According to the model, the total power scattered
at a co-polarized channel pp,σo

pp, is the incoherent sum of
contribution of the vegetation,σo

veg, and that of the underlying
soil, σo

soil, which is attenuated by the vegetation layer. In
order to include the effects of orientation and geometry of
the vegetation, Bindlish & Barros subsequently modified this
model by introducing the vegetation correlation length,α [6].
The modified water-cloud model thus expressesσo

pp as:

σo
pp = σo∗

veg + τ2 σo
soil (1)

with τ2 = e{−2b Wc sec θ} (2)

σo∗
veg = σo

veg (1− e−α) (3)

and σo
veg = Amv cos θ (1− τ2) (4)

where σo∗
veg is the backscatter contribution of the vegetation

corrected for the effects of orientation and geometry of the
canopy. The parameter,α, is a function of the average
distance between vegetation canopies within a pixel,mv is the
volumetric soil moisture content,τ2 is the two-way vegetation
transmissivity,Wc is the vegetation water content inkg/m2

andθ is the radar incidence angle.
The vegetation-dependent parameters,A andb, determined

from experimental observations [8], represent the vegetation
scattering and the vegetation attenuation, respectively. Also,
other vegetation parameters such asWc and α are measured
directly at the ground. Consequently, this indicates that the
transmissivity,τ2, and all the parameters derived from the
parameters, as given in (1) to (4), rely on ground based
measurements. This concern is addressed in the next section.

The above modified water cloud model shows that a con-
siderable number of factors are taken into account in order
to determine a sufficiently correct estimate of the vegetation
backscatter,σo

veg.
In the modified empirical model of [2], the soil backscatter,

σo
soil, is computed by a Least Mean Squares (LMS) regres-

sion between the measured backscatter and the volumetric
soil moisture [9]. The regression analysis expresses the soil
backscatter as a linear function of the soil moisture content:

σo
soil = C + D mv dB (5)

Here, the Dubois model is used to obtain an initial estimate
of the soil moisture content,mv. The use of the Dubois
model itself at an initial stage to compute the soil backscatter,
which is subsequently used in the water-cloud model, leads
to a significant probability that errors are introduced into the
modified model given in [2].

In the present work, Dobson’s model for the soil backscat-
ter [10] is employed to computeσo

soil in conjunction with the
linear regression analysis. According to Dobson and Ulaby,
the soil backscatter can be given by the general form:

σo
soil = 4 (k s)2 (k L)2 cos4θ e{−(kL sin θ)2} |Γo|2 (6)

wherek = 2π/λ is the radar wavenumber,s is the surface
roughness,L is the surface correlation length andθ is the
incidence angle. The Fresnel reflectivity,Γo, can be obtained
from the dielectric constant,ε′, using [4]:

Γ0 =

∣∣∣∣∣
1 − √

ε′

1 +
√

ε′

∣∣∣∣∣ (7)

The original Dubois model is initially implemented to obtain
an estimate of the surface roughness and the dielectric constant
required in (6) and (7). The surface correlation length is
obtained from ground measurements.

In the modified empirical model [2], the vegetation effects
were introduced into the existing model only if the average
cross-polarization ratio for a particular site was greater than
−11 dB. Based on this train of thought, the adaptive nature
of the model can be improved by evaluating the vegetation
sensitivity on a pixel by pixel basis.

The vegetation-covered soil moisture sensitivity,Sv, was
defined by Ulaby et al. [11] as:

Sv =
SB(

1 + σo∗
veg

τ2 σo
soil

) (8)

where the sensitivity of bare soil,SB , is given as:
SB = 4.34 D (9)

The values ofσo
veg, τ2 and σo

soil are obtained using (3), (2)
and (6), respectively. The coefficient,D, is determined from
the LMS regression analysis of (5).

By examining the limits ofSv as function of the ratio inside
the brackets in (8), it is evident that:

Sv ' 0, for τ2σo
soil ¿ σo∗

veg (10)

and Sv ' SB , for τ2σo
soil À σo∗

veg (11)

The first limit, Sv ' 0, represents the case where the vegeta-
tion completely masks the soil, while the second limit,Sv '
SB , represents the situation where backscatter is dominated by
the soil contribution. Consequently, pixels for whichSv < SB

may be considered as vegetated and vegetation correction is
applied only to these pixels.

B. Remote estimation of vegetation parameters

In addition to the concern for higher estimation accuracy in
regions with larger amounts of vegetation, it is also desired
that a retrieval algorithm should require minimum ground-
measurable parameters, instead it should rely on determining
these parameters remotely.

Ulaby & El-Rayes suggested a dielectric model for the
vegetation, where the vegetation transmissivity,τ , could be
calculated as [12]: τ = 4π (d/λ) Im[

√
εv] (12)

whered is the thickness of the layer,λ is the radar wavelength
and εv is the vegetation dielectric constant determined by:

εv = εr + vfw

[
4.9 +

75
1 + jf/18

− j
18σ

f

]

+ vb

[
2.9 +

55
1 + (j f/18)0.5

]
(13)



In the above relation,εr is a non-dispersive residual compo-
nent, f is the frequency in GHz,σ is the ionic conductivity
in siemens per meter, andvfw andvb are the volume fractions
of free water and bulk vegetation-bound water, respectively.

According to regression curves obtained from a number of
experimental data sets, it was concluded that the parameters
in (13) can be computed by the following equations:

mv = mg ρ/[1 − mg(1 − ρ)] (14)

εr = 1.7 − 0.74 mg + 6.16 m2
g (15)

vfw = mg(0.55 mg − 0.076) (16)

vb = 4.64 m2
g/(1 + 7.36 m2

g) (17)

σ = 1.27 (18)

where mv and mg are the volumetric and gravimetric soil
moisture contents, respectively. Thus, by going backwards
from (18) to (12), the transmissivity,τ2 can be determined
without the need of the vegetation parameters,A andb.

As compared to (1) to (4), the only ground measurements
required in the above dielectric model are the vegetation
thickness,d, and the soil bulk density,ρ. This is a better choice
of model, since the parameters,A and b, are found from re-
gression analysis of suitable, available ground measurements.

The vegetation water content can be determined remotely
by using the normalized vegetation difference index (NDVI).
NDVI is a measure of the vegetative cover and is gener-
ally calculated from reflectances measured in the visible and
near infrared channels of hyperspectral imagery. A non-linear
relation between the NDVI andWc is derived in [13] by
optimizing a polynomial function:

If NDVI ≤ 0.5
Wc (kg/m3) = 1.9134 (NDVI)2 − 0.3125 (NDVI) (19)

If NDVI > 0.5
Wc (kg/m3) = 4.2857 (NDVI) − 1.5429 (20)

Dubois et al. provide a regression curve between the cross-
polarization ratio for L-band data and the NDVI [1]. As a
result, for cases where L-band data is available, the NDVI can
be computed using this alternate method; else hyperspectral
imagery can be used.

IV. I MPLEMENTATION

The augmented algorithm proposed in Section III-A is
applied to C-band, Convair-580 airborne SAR data acquired
during a polarimetric data collection campaign in Ottawa. Two
different passes (L2P3 and L3P2) of data were collected over
the same agricultural area on June 26 and July 19, 2001. The
test sites in the image, shown in Fig. 1, include four different
fields comprising of corn, wheat and soybean.

Both data sets include ground measurements of the soil
moisture content, surface roughness, plant height and the
vegetation water content. However, the vegetation parameters,
A, b and α, for each vegetation type are not specified in the
ground truth. Furthermore, the vegetation thickness,d, and

the soil bulk density,ρ, for each field have not been specified,
thus limiting the scope for the computation of the vegetation
transmissivity,τ2. Instead, the vegetation parameters derived
previously in [6] are used. This assumption is based on the
overall similarity of the vegetation types used in [6] to those
in our current data set. Table I summarizes the vegetation
parameters that are assumed for each field.

Fig. 1. Location of study sites used for the 2001 CV-580 field campaign

Since the CV-580 data is C-band and hyperspectral data is
not available, the NDVI for a certain field or pixel cannot be
computed. As a result, it is not possible to apply the method
suggested in Section III-B to remotely determineWc for the
present data set. Further, it is important to note that the ground
report does not specify the correlation length,L required in
(6) and a value is estimated for the each crop type that gives
the best vegetation correction to the data.

TABLE I

SITE CHARACTERIZATION FOR POLARIMETRIC DATA COLLECTION

CAMPAIGN IN OTTAWA , 2001. SOURCE: [14], [8], [6]

Site Land Cover Wc (kg/m2) A b α

25 Wheat 2.31 0.0018 0.138 0.96

23 Corn 1.25 0.0012 0.091 2.12

16 Soyabean 2.31 0.0014 0.084 0.979

ADRI Corn 0.36 0.0012 0.091 2.12

As in [2], a regression analysis is initially performed on the
measured VV backscatter,σo

vv, and the soil moisture content,
mv, estimated by the original Dubois model. The derived
linear relationship is further used to determine the sensitivity
of bare soil,SB , and subsequently the vegetation sensitivity,
Sv, as given in (8) and (9). Also, the application of the
Dubois model provides the surface roughness,s, and Fresnel
reflectivity, Γ0, required to computeσo

soil at a later stage.
Based on the experimental observations in [2], the vegeta-

tion effects are introduced only into the VV backscatter (HH
is used in the Dubois model without a vegetation correction).
The vegetation backscatter,σo∗

veg, and the soil backscatter,
σo

soil, for each pixel are obtained from (3) and (6). Further,



the modified empirical model is now applied on a pixel basis
only for the condition when the vegetation sensitivity,Sv, at
a certain pixel is less thanSB . The vegetation corrected VV
backscatter,σ◦vv, determined using the water-cloud model is
finally used in Dubois’ inversion model to obtain the corrected
estimates of the volumetric soil moisture,mv.

V. RESULTS

The plots of the estimated values of volumetric soil mois-
ture for the original empirical model and for the proposed
algorithm with vegetation correction are shown in Figs. 2 and
3, respectively. The RMS deviations from the measured values
have been computed to estimate the accuracy of each model.
A 45◦ line is shown to indicate perfect model correspondence.

A visual comparison of the plots indicates that the intro-
duction of the vegetation index improves the accuracy of the
estimation, as compared with the original bare soil model.

At this point in time, two of the fields in the July 19 data are
giving anomalous results from the vegetation model, and have
been removed from the graph. They are affected by the method
of computing dielectric constant. We are presently trying to
resolve this. Additional results will be given at the conference
and posted on:http://sar.ece.ubc.ca/papers/

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Measured Soil Moisture (cm3/cm3)

E
st

im
at

ed
 S

oi
l M

oi
st

ur
e 

(c
m

3 /c
m

3 )

RMS Deviation  =  0.073

June 26
July 19

Fig. 2. Soil moisture results for the Dubois (bare soil) model
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Fig. 3. Soil moisture results with vegetation correction

VI. SUMMARY

An improved methodology for incorporating a vegetation
index into the Dubois model is presented. The modified model
allows the vegetation correction to be applied on a per-pixel
basis by evaluating the vegetation sensitivity at each pixel

and subsequently applying the vegetation correction only at
pixels with a considerable amount of vegetation. Further, an
approach for the remote estimation of vegetation parameters
is discussed.

As seen in the results, the proposed model improves the soil
moisture estimation compared to the original Dubois model.
Note that the vegetation parameters were not all available
in the ground truth, hence, they were selected from prior
experiments. Also, the correlation length had to be determined
by an arbitrary fitting. As a result, it is difficult to verify the
accuracy of the model in absolute terms. However, the model
does provide the structure and degrees of freedom to give
suitable vegetation-corrected results when a plausible set of
ground measurements are available.
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