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ABSTRACT

Future Earth observing missions will study different as-
pects and interacting pieces of the Earth’s eco-system.
Scientists are designing increasingly complex, interdis-
ciplinary campaigns to exploit the diverse capabilities of
multiple Earth sensing assets. In addition, spacecraft
platforms are being configured into clusters, trains, or
other distributed organizations in order to improve either
the quality or the coverage of observations. These simul-
taneous advances in the design of science campaigns and
in the missions that will provide the sensing resources
to support them offer new challenges in the coordina-
tion of data and operations that are not addressed by cur-
rent practice. For example, the scheduling of scientific
observations for satellites in low Earth orbit is currently
conducted independently by each mission operations cen-
ter. An absence of an information infrastructure to en-
able the scheduling of coordinated observations involving
multiple sensors makes it difficult to execute campaigns
involving multiple assets. This paper proposes a soft-
ware architecture and describes a prototype system called
DESOPS (Distributed Earth Science Observation Plan-
ning and Scheduling) that will address this deficiency.

Key words: Observation scheduling, remote sensing.

1. INTRODUCTION

NASA’s Earth Science vision emphasizes the importance
of establishing a tighter link among Earth Science mod-
els, data analysis, and observational activities at all rele-
vant spatial and temporal scales. To enable such a tight
linkage, there needs to be an associated information in-
frastructure binding the cycle of observation, on-board
data handling and computing, transmission to ground,
storage, data mining and product distribution to support
activities such as inverse modeling, data assimilation and

model evaluation. The cyclical nature of the linkage im-
plies that new observation goals will emerge out of the
products generated from previous observations.

Future remote sensing environment will consist of large
numbers of networked sensors that are frequency-agile
and capable of multi-scene observations from different
space vantage points. Data acquired from such plat-
forms will be merged with those acquired by more tra-
ditional systematic missions (such as Landsat). Second,
for the purpose of validation and model robustness, data
acquired by other observational platforms, including sub-
orbital measurements using ground-, airborne-, and bal-
loon sensors, will be merged with data from remote sens-
ing platforms to form a sensor-web. Furthermore, the fo-
cus will be on the development of complex compositional
Earth Science models, wherein focused process models
combine iteratively to form interactive multi-component
models that simulate the coupled behavior of two or more
Earth system components. A complete multi-component
model of the Earth is considered the holy grail of Earth
Science research.

Consequently, Earth scientists will require data from mul-
tiple sources distributed in space, over significant periods
of time, with choices available to the users of the data
with respect to when, where and how these data will be
acquired. Planning and executing a series of observations
will benefit from information technology that provides
an interface and set of automated tools for accessing the
sensing resources available to meet observation goals, in
a way analogous to the way that web-based archive data
retrieval tools such as EOSDIS provide an interface for
retrieving data that has been acquired in the past.

This paper provides an overview of a set of capabilities
for addressing the need for coordination of observations.
The system is based on a methodology called model-
based observing. ByModel-based observingis meant
here the process of allocating and scheduling sensing re-
sources based on the goal of validating a specific hypoth-
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esis derived from an Earth science model. Model-based
observing allows observation scheduling to becampaign-
driven, where a campaign is defined as a systematic set
of activities undertaken to meet a particular science ob-
jective. Campaign goals require the collection of data on
several variables, on different observing resources at dif-
ferent times and potentially at varying locations.

In the following sections we first present the overall ar-
chitecture for model-based observing that links the Earth
Science community to observation resources. Part of the
architecture forms the set of capabilities for coordinat-
ing observations, which is the focus of the remainder
of the paper. These capabilities are organized into a set
of components of a system, called DESOPS (Distributed
Earth Science Operations Planning and Scheduling Sys-
tem). DESOPS solves a constraint optimization problem
as well as a schedule execution, monitoring and replan-
ning problem, all of which are discussed here.

2. ARCHITECTURE FOR MODEL-BASED OB-
SERVING

Model-based observing requires coordinating the assign-
ments of observation tasks among a collection of re-
mote sensors or sub-orbital platforms such as ground-,
airborne-, and balloon sensors, possibly configured into
an organization (e,g, a train or a sensor web) (4). It is
assumed here that each sensing or satellite resource has
a distinct, geographically separated, operations team for
managing the daily activities of each sensor. Using an
economic metaphor, the interests and objectives of these
“resource owners” are potentially different from those of
the consumers; in particular, the users want maximum
utility of the data received associated with their specific
science goals, whereas the resource owners have other,
potentially conflicting goals. In this regard, the operation
environment for model-based observing offer challenges
similar to those potentially solved by so-calledcomputa-
tional grid systems (9), namely the need to provide visi-
bility and access to a set of resources while maintaining
the security and autonomy of operations for each.

A system for coordinating observations provides an
added layer between the users of sensing resources and
mission operations planners. Part of this coordination
layer consists of software tools that allow consumers and
providers to express requirements for facilitating the suc-
cessful completion of observation goals. Resource users
need to specify a set of measurements as well as a utility
model for the data to be acquired. They need to be able to
specify constraints on cost and completion time for their
campaign goals. They need a mechanism to act as a bro-
ker to identify available resources and dynamically sub-
mit requests to schedule observations on them. The tool
should monitor the execution of these requests and adapt
to uncertainties in the availability of resources during ex-
ecution, which potentially involves rescheduling observa-
tions on the same or different resources. Resource owners
need a flexible means to specify constraints on the utiliza-
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Figure 1. Architecture for Model-based Observing

tion of the resource, as well as a way to continuously sup-
ply updated statistics on current load and capacity. They
need a system that will facilitate improved utilization of
their resource without interrupting normal mission oper-
ations.

The overall architecture is displayed in Figure 1. The re-
mainder of this paper discusses the layer marked DES-
OPS (Distributed Earth Science Observation Planning
and Scheduling).

3. DESOPS ARCHITECTURE

The set of system components in Figure 1 labeled DES-
OPS consists of part of the information infrastructure for
constructing and executing campaign plans involving a
collection of sensors, and enables more direct contact be-
tween Earth Scientists and the mission planning process.
The next sections describe these component capabilities
in more detail.

3.1. Constellation Model

A constellation modelconsists of a database and set of
functions for defining the capabilities and dynamics of
resources available to the user for observation. There are
five components to a constellation model:



1. a description of the capabilities of a collection of
geophysicalsensors;

2. a model oftime. For the purposes of coordinated
campaign, time can be viewed as a finite set of to-
tally ordered values naturally interpreted as the set
of days in which some observation can be taken or
some other event of interest happens;

3. a global notationfor data, enabling a user to in-
quire about satellite imagery over any portion of
the world by specifying the location of the data
of interest. Examples of global notation systems
are the Worldwide Reference System (WRS) (6), or
latitude-longitude.

4. a satellite orbit function for determining the set of
sensor viewing times for a specified region of inter-
est; and

5. for each resource, amission modelthat describes
constraints on the process by which tasks on the sen-
sor are scheduled by the mission that manages it.

Collectively the constellation model provides a language
for specifying the requirements for using a collection of
sensing resources.

3.2. Graphical User Interface

Users define and revise campaigns over time through a
graphical user interface. Users define a campaign to
consist of a set ofmeasurements; an (optional) set ofex-
ogenous events(such as a fire or volcano); and a set of
constraints, restrictions the way a campaign can be car-
ried out. Constraints are described more fully below.

The main screen of the interface is displayed in Figure 2.
This screen shows a map for specifying regions of inter-
est for a campaign, a flexible plan (defined in more detail
below) and a textual representation of a campaign as a hi-
erarchy of measurements and constraints. The view path
swaths (defined below) for one of the requested satellites
has also been computed automatically and is visually dis-
played.

3.3. Planner

The role of thePlanner is to build and manage flexible
plans. First, the planner constructs an initialflexible plan
based on user inputs. Second, new constraints are added
by propagating the effects of the initial set of constraints.
In particular, the planner generates start times for each
sensor in the domain of each measurement fromview
pathsover specified regions of interest during specified
time windows. A view path is the intersection of a speci-
fied region of interest with the path followed by a satellite
over the user-specified time window. In DESOPS, view
paths are generated by conducting a web search for this

data from mission web sites. Alternatively, it is possible
to generate this data directly through the use of simula-
tors such as STK (Satellite Tool Kit). Converging on a
flexible plan is an iterative process in which the user is
allowed to view and revise the inputs to the problem.

3.4. Request Manager

An observation requestis a specific assignment of a sen-
sor, a time, and a location to the measurement. Afea-
sible observation scheduleis a sequence of observation
requests that satisfy the user specified constraints. In
general, a flexible plan gives rise to a number of feasi-
ble observation schedules. TheRequest Managerin-
crementally executes a feasible observation schedule by
submitting observation requests to missions. The Re-
quest Manager alsomonitorsthe state of the executing
plan, and initiatesreschedulingactivities where neces-
sary. To carry out these functions the Request Manager
implements an execution strategy (described in more de-
tail below) for dealing with uncertainty in the execution
environment and applies a state- transition model to mon-
itor the progress of the plan.

3.5. Plan Database

The Plan Databasestores all the current information
about every campaign being managed in DESOPS. The
database is used in all phases of campaign planning and
execution, and contains

1. the definitions of all the measurements in the cam-
paign;

2. constraint information

3. a description of the observation requests generated
and submitted to missions; and

4. other information used by the DESOPS components
associated with the state of a campaign.

4. CAMPAIGN PLANNING AS A CONSTRAINT
OPTIMIZATION PROBLEM

DESOPS’ scheduling problem can be mapped into acon-
straint optimization problem(COP). A COP consists of
a set ofvariables, each associated with adomainof pos-
sible assignments, and a set ofconstraintsdefined over
the subset of the variables. Associated with each solution
(complete set of assignments) is anobjective functionthat
evaluates the quality of each solution. In aPartial Order
COP (PCOP) the objective function induces a partial or-
dering of the set of solutions based on quality. In amulti-
attributeCOP, the objective function can be decomposed
into a collection of criteria that are combined in some



Figure 2. Graphical user interface for defining coordinated campaigns. The blue box represents the location constraint,
green boxes represent view paths that satisfy that constraint. Also shown are an executing flexible campaign plan depicted
as a network, and a tree representation of the plan objects and constraints.

manner to obtain the objective function value. In DES-
OPS, variables are associated with measurements and the
domains will be triples of times, locations and sensors.
In this section we formulate the problem and describe the
approach to generating plans.

4.1. Campaign Constraint Definition

The constellation model provides domains of sensorsS,
locationsL , and timesT , and defineslocation con-
straints on S × L × T that restrict possible values for
measurement variables. Formally, we define a function
orbSk

: GN → T , whereGN is an area on the Earth
described using some global notation, andorbSk

(r) ⊆ T
is a set of viewing times for a specified locationr on a
sensorSk ∈ S. Each sensorSi ∈ S is associated with a
costcost(Si) for using it to take an image.

Each campaign consists of a set ofmeasurements{Mi},
a set {Ek} of exogenous events, and a set ofcon-
straints. Each measurementMi is associated with a tu-
ple ofrequest variablessMi

, tMi
, lMi

, where the domain
of sMi

(dom(sMi
)) is a subset ofS, the domain oftMi

(dom(tMi
)) is a subset ofT , anddom(lMi

) is a set of
locations. Letsvar = {sMi

: 1 ≤ i ≤ n}; define
tvarandlvar similarly, and letmvar = tvar ∪ svar ∪ lvar.
The user may designate a subset ofM to be “optional”,
meaning informally that if no observation is taken of the
measurement variable, the campaign will still have value.

A measurement that is not optional isrequired.

An exogenous eventEK can be specified as a pair ofpa-
rameterstsEk

, t
f
Ek

, of start and end times, with domainT .
These variables can be viewed as discrete random vari-
ables with a probability distribution overT . For a given
campaignM , let vM = mvar ∪ epar.

The setCM of user-specified constraints on a campaign
M are defined over, and restrict the permitted values of,
variables inmvar. There are six kinds of constraints:

1. For eachMj ∈ M , there aresensor domain
constraints of the formdom(sMj

) = SMj
, <SMj

,
whereSMj

⊆ S, and<SMj
specifies a preference

ordering for elements inSMj
; Sk <SMj

Sp means
”prefer acquiring data withSk overSp for measure-
mentMj”.

2. A temporal constraint has one of two flavors. The
first provides a means to coordinate measurements,
or to constrain start times for measurements, and has
the formtxj

− txi
∈ {Ti, . . . , Ti+m}, pref , where

pref ∈ {min, max, mid} is an (optional) pref-
erence function for times in{Ti, . . . , Ti+m}, and
wherexi, xj ∈ mvar ∪ epar. The other flavor of
temporal constraint restricts the times of measure-
ments with respect to exogenous events, and has the
form txj

− txi
∈ {Ti, . . . , Ti+m}, p(µ, σ), where

p(µ, σ) specifies a probability distribution over the



set of times, and wherexi, xj ∈ mvar ∪ epar. Such
a constraint expresses a prediction about when an
exogenous event will occur.

3. A region-of-interest lMi
, and an associatedtime

window [Ts, Te], Ts, Te,∈ T , are specified for each
measurementMi. A location constraint induced
by the specified region-of-interest is of the form
dom(tMi

) =
⋃

S∈SMi
orbS(lMi

), i.e. the domain of
tMi

is restricted to the set of times for which there is
a sensorS ∈ SMi

available to take the observation
of the region-of-interestlMi

This core set of constraints can be expanded to include
a budget constraint, a restriction on the overall cost
Σcost(Mi) of the campaign, and acloud cover constraint
which restricts the amount of acceptable cloud cover as-
sociated with the image.

A multi-attribute objective function for evaluating solu-
tions to the DESOPS COP is constructed from a set of
user-specified criteria for good solutions. These criteria
include

1. World feasible: intuitively, a solution is world fea-
sible if it satisfies the constraints and is consistent
with the expected behavior of the exogenous events.

2. Minimal cost: The cost of a solution is the sum of
the cost of the sensors used on each measurement.

3. Temporally preferred: preference for solutions that
maximize the overall preferences for times.

4. Resource preferred: preference for solutions that
maximize the overall preferences for sensors.

Given a complete assignment to the variables inmvar, the
value of this assignment with respect to each of these cri-
teria can be rigorously derived from techniques discussed
elsewhere, e.g. (3), and (2).

4.2. Campaign Generation

The process of converging on an high quality campaign is
an iterative process performed jointly by the human user,
the DESOPS planner and request manager. There are
three main steps in the process. First, a minimal flexible
plan is constructed. A flexible plan for this problem can
be represented as an augmented Simple Temporal Net-
work (STN) (8) consisting of nodes representing events
or measurements, and directed arcs labeled by constraint
information. The STN is augmented by a representation
of temporal preference, uncontrollable events and asso-
ciated probabilities associated with the time intervals, as
defined in (3), (12), and (2) (the augmented STN rep-
resents aSimple Temporal Problem with Preferences and
Probabilities). An example is found in Figure 3. The plan

M 2 M 3E 1
M 1 S 1 , S 2 , S 3S 1 , S 2

S 3 [ 4 0 , 1 0 0 ][ 1 , 3 0 ] , m i n [ 1 , 3 0 ]
Figure 3. A simple Flexible Plan. Each node of the
network represents a measurement or event. Directed
arcs depict temporal orderings, labeled with the dura-
tion between event(s) and measurements(s) The sensors
are listed with each measurement.

consists of three measurements and one event. The con-
straint[40, 100] represents the belief that eventE1 is ex-
pected to happen sometime beteen day 40 and day 100 of
the campaign. The other constraints represent temporal
ordering constraints; for example, the label betweenM1
and E1 expresses the constraint thatM1 should occur
between 1 and 30 days beforeE1, with a preference for
times as close toE1 as possible. The sensor constraints
are also attached to each measurement in the plan. As
illustrated in Figure 2, a flexible plan network is part of
the visual displays available to the user during campaign
definition. The same display is used during campaign ex-
ecution to provide the user with status information about
the plan. For example, in the figure, the blue nodes indi-
cate measurements that have been acquired, and the yel-
low node represents an exogenous event that has yet to
occur.

Second, from the initial network, new temporal con-
straints are added by propagating the effects of initial set
of temporal orderings. Shortest path algorithms (10) can
be applied to generate theminimal network, a set of con-
straints that precisely describe the set of solutions to the
initial problem. In addition, the set of temporally optimal
solutions can be derived by techniques discussed in (3).

Third, request sequencesof observations are created to
submit to the missions. To build a single request se-
quence, it must be decided

1. Which Mi to select next (ordering of measure-
ments);

2. Which admissible sensorSj to associate withMi;

3. Which admissible timeTk to assign to the observa-
tion request, based on the selection of (2).

Specified user preferences guide these decisions, and the
user is allowed to interactively revise the set of observa-
tion requests to consider. Specifically, the system gen-
erates the set of candidate observation requests for each



measurement; the user is allowed to delete from this can-
didate list.

4.3. Example

Here, we present a hypothetical campaign based on a
science goal to test an emissions model predicting the
aerosols released by wildfires. Data on several measure-
ment variables must be gathered in order to accomplish
the analysis. In particular, vegetation type or biomass,
atmospheric aerosol concentration and burned area are
needed for the region. Fuel moisture content is a variable
that also would be useful for the objectives of the science,
though not a necessity. Sensors that provide products at
various spatial resolutions relevant to these variables in-
clude Landsat Enhanced Thematic Mapper+ (ETM+) or
Thematic Mapper (TM) can be used for mapping vege-
tation type. Optimal timing for acquiring Landsat data
for this purpose would be June or July in the same year
that the fires burned, when forested land can most eas-
ily be spectrally distinguished from grassland. For map-
ping aerosol concentration, images coincident to burning
must be obtained. Moderate Resolution Imaging Spectro-
radiometer (MODIS) on the Terra and/or the Aqua satel-
lites would provide data for this variable. MODIS data
from either platform could also be used to provide coarse
spatial resolution burned area after (though not too long
after) the fires were out. For mapping vegetation moisture
content, hyperspectral data from EO-1 Hyperion instru-
ment are relevant. The most useful data for this purpose
would need to be acquired just preceeding the fire. We
assume the day the campaign is constructed is Day 0 and
the campaign window is until Day 122.

• Constellation Model

– Locations and times are as defined above

– Sensors

S = {ETM+, TM, Hyperion, MODIS}

with associated orbit functionsorbs∈S and the
following cost functions: cost(ETM+) =
1500,cost(TM) = 500, cost(Hyperion) =
2000,cost(MODIS) = 1000.

• Problem Inputs

– Variables: A setM of measurement variables
aero, moist, veg representing aerosol concen-
tration, moisture content, and amount of veg-
etation in burned area.moist is designated as
optional. A single exogenous event,fire.

– Sensor constraints and preferences:
sveg ∈ {ETM+, TM}, ETM+ <aero TM ,
smoist ∈ {Hyperion},
saero ∈ {MODIS}.

– Temporal Ordering Constraints:
tveg − T0 ∈ {31, 32, . . . , 92},
tsfire − tveg ∈ {0, 1, . . . , 14}, min,

T R
m o i s t u r e F i r eS t a r tv e g e t a t i o n F i r e E n d

{ 3 1 , . . . , 9 2 }
{ 0 , . . . } , m i n A e r o s o l{ 0 , . . . } { 0 , . . . }{ 0 , . . . } { 6 1 , . . . 7 5 }u n i f o r m { 1 0 5 , . . . 1 2 0 }u n i f o r m

Figure 4. Network representation of inputs to the fire
example

taero − tsfire ≥ 0,
tefire − taero ≥ 0
tsfire − tmoist ≥ 0, min,
tefire − T0 ∈ {105, 106, . . . , 120}, uniform,
tsfire − T0 ∈ {61, 62, . . . , 75}, uniform 1.

– Regions-of-interest laero, lmoist, lveg , each
with time window[0, 122].

– Budget constraint:cost(M) ≤ 2000.

• Flexible Plan for Campaign. The flexible plan
for the original constraints (before propagation) is
found in Figure 4. There are nodes for each mea-
surement type and for the start and end of the fire.
There is a reference node (representing time 0) and
directed labeled arcs for each constraint. As is cus-
tomary, the interpretation of an arc betweenA and
B is that the temporal gapB − A is constrained to
have a value in the set of values displayed on the
edge label.

Assume the constellation model generates the
following set of values:
orbETM+ (lveg) = {3, 19, 35, 51, 67, 83, 99, 115};
orbTM (lveg) = {5, 21, 37, 53, 69, 85, 101, 117};
orbMODIS(laero) = {36, 52, 68, 84, 100, 116};
orbHyperion(lmoist) = {0, 30, 60, 90, 120}.
Then the possible observation times can be repre-
sented by the following location constraints:
dom(tveg) = orbETM+(raero) ∪ orbTM (raero) =
{3, 19, 35, 51, 67, 83, 99, 37, 53, 69, 85}
dom(tmoist) = orbHyperion(rmoist) =
{0, 30, 60, 90, 120}
dom(taero) = orbMODIS(raero) =
{36, 52, 68, 84, 100, 116}.

The domain constraints, coupled with the user-
specified ordering constraints, allow for fur-
ther domain refinements or new ordering con-
straints. For example, fromtveg − T0 ∈
{31, 32, . . . , 92} and the domain constraint above,
we can derive the new domain constraint by in-
tersection of the two sets, resulting intveg ∈
{35, 51, 67, 83, 99, 5, 21, 37, 53, 69, 85}.

1For simplicity, we represent the fire start and fire end as a range of
expected values in a uniform distribution.
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Figure 5. A state transition model for measurements.
States and possible transitions between them are de-
picted.

5. EXECUTING A CAMPAIGN REQUEST SE-
QUENCE

Executing a campaign requires formulating requests and
submitting them to missions, monitoring the progress of
a campaign over time, and initiating rescheduling actions
as needed in response to unexpected events. The Re-
quest Manager’s behavior is constrained by anexecution
strategyon when and how requests for measurements are
submitted to missions. An execution strategy is part of
a mission model. The mission model informs the Re-
quest Manager on matters related to which mission is
most likely to be able to fulfill a request, as well as how
and when to submit the request. For example, the mission
model may contain aload profilefor each sensor, which
indicates the percentage of time the sensor has been idle
during a specified period. The Request Manager may ap-
ply this information by preferring sensors with a smaller
load. Second, a mission model contains formatting rules
for request submssion. Third, a mission model contains
deadlines for submitting requests based on the mission-
scheduling process.

The Request Manager monitors a campaign by imple-
menting astate transition model, which identifies pos-
sible states of the overall campaign, the component mea-
surements defined for the campaign, and, for each mea-
surement, the state of each associated observation request
and legal transitions between states. The Request Man-
ager observes whether enabling conditions for a transition
are met, and, if they are, records the change in state. The
state transition model also allows the Request Manager
to detect when a campaign has failed during execution,
which triggers a suspension of the campaign and notifi-
cation to the user for rescheduling purposes.

Figure 5 shows a state transitions for a measurement. A
measurement starts in a feasible state. It becomes enabled
when the temporal preconditions for taking the measure-
ment are met (for example, an exogenous event happens
or a dependent measurement has been acquired). It be-
comes infeasible if the constraints make it impossible for

M 1 M 2 M 3S 1 : 4 0 { S 2 : 1 0 0 , S 3 : 1 2 0 }S 1 : 6 0 E 16 9 1 � 3 02 9
Figure 6. A replanning scenario. The occurrence ofE1
at time 69 has made it impossible to schedule an obser-
vation of M3 that satisfies the constraint betweenE1
andM3. The user must decide whether to relax the con-
straints on the plan to restore its feasibility.

it to be taken; this can happen, for example, if all submis-
sions of requests for the measurement are rejected. Oth-
erwise, a measurement is pending if at least one request
for the measurement has been submitted. If a mission ac-
cepts the request and the image is acquired, the measure-
ment enters the terminal nodeTaken. The user may de-
cide during execution to use data in an archive to acquire
the needed data. If so, the Request Manager no longer
submits requests for the observation to the missions.

5.1. Replanning

As the campaign plan executes, missions may fail to ac-
cept requests or exogenous events may happen, or fail to
happen, at unexpected times. As a result, a campaign may
become infeasible. If a mission rejects a request and there
are alternative viewing opportunities, the Request Man-
ager will automatically resubmit requests. If for any rea-
son, the set of viewing opportunities for a measurement
is empty during campaign execution, the human user de-
cides whether to restore feasibility to the plan or to abort
it.

Plans are restored to feasibility by relaxing constraints.
Figure 6 shows a simple plan that was made infeasible
during execution. Exogenous eventE1 happened at time
69. A constraint requires measurementM3, which has
yet to occur, happen between 1 and 30 days afterE1. M3
has two observation opportunities: with sensorS2 at time
100, or with sensorS3 at time 120. Clearly, both exceed
the upper bound on the temporal ordering constraint, and
so this constraint is violated. The user may relax the up-
per bound of the temporal constraint to make the observa-
tion opportunities consistent with the plan. Alternatively,
the user may add additional sensors forM3 that include
opportunities consistent with the ordering constraint, or
may decide to acquireM3 data through an archive.

DESOPS provides the user continuous plan execution
status. It also provides notification of the need for plan
repair when the plan becomes infeasible during execu-
tion. Visual and textual information will be provided by



DESOPS’ explanation facility, using a model to map plan
state information into useful textual or visual advice.

DESOPS is implemented in C++ and Java. The
implementation is built upon previous work on the
AMPS/MOPSS system and the EUROPA constraint-
based planning system (7). An end-to-end prototype with
the capabilities described in this paper is currently being
tested and evaluated.

6. DISCUSSION

We view observation scheduling, the core capability of
DESOPS, is one part of a broader vision for managing
sensing resources for Earth Science. We view the ulti-
mate goal of developing automated tools for campaign
management to be the efficient and effective acquisition
of data products, not simply the scheduling of sensing re-
sources. Many sensing resources are not “controllable” in
the sense that they are designed to continuously acquire
images. For such a mixed environment of controllable
and uncontrollable sensors, the overall planning problem
requires the joint management and scheduling of remote
sensing as well as data archive services. We are currently
extending the DESOPS architecture to integrate observa-
tion scheduling with planning for data analysis as dis-
cussed in (5), which would lead to an end-to-end planning
system for generating data products. Such systems could
also plan for “virtual sensing” activities, as discussed in
(11).

Second, we are exploring the integration of Earth Science
domain models into DESOPS planning. This would en-
able the system to provide more robust advice to a user
in formulating campaigns. For example, such models
could advise users on the detailed selection of promising
regions-of-interest for developing a fire campaign. Fi-
nally, we are working on devising a means for providing
a ”feedback loop” from the results of data analysis to the
formulation of new campaign goals for DESOPS. Each
of these enhancements contribute to the overall vision, as
described in (1), to forge a tighter link between modeling,
observing, and data analysis.

7. CONCLUSION

This paper has described a set of capabilities for building
and executing sequences of observations for accomplish-
ing complex campaign goals. Observation requests gen-
erated from user inputs describing campaign goals and
constraints are submitted electronically to mission oper-
ations planners, who then decide whether and how to in-
corporate the request into future mission schedules. The
system also supports dynamic replanning in response to
request rejection or unexpected changes in the observing
environment. The overall approach to distributed plan-
ning has the advantage of allowing missions to maintain
ultimate control over their instruments while at the same

time allowing Earth scientists more visibility into the re-
sources available for accomplishing their science objec-
tives.
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