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Abstract— In this paper, we present two novel algorithms for denoising
hyperspectral data. Each algorithm exploits correlation between bands
by enforcing simultaneous sparsity on their wavelet representations. This
is done in a non-linear manner using wavelet decompositions and sparse
approximation techniques. The first algorithm denoises an entire cube
of data. Our experiments show that it outperforms wavelet-based global
soft thresholding techniques in both a mean-square error (MSE) and a
qualitative visual sense. The second algorithm denoises a set of noisy, user
designated bands (“junk bands”) by exploiting correlated information
from higher quality bands within the same cube. We prove the utility
of our junk band denoising algorithm by denoising ten bands of actual
AVIRIS data by a significant amount. Preprocessing data cubes with these
algorithms is likely to increase the performance of classifiers that make
use of hyperspectral data, especially if the denoised and/or recovered
bands contain spectral features useful for discriminating between classes.

I. INTRODUCTION

Many important applications, such as target detection, material
identification and material mapping, require high signal-to-noise ratio
(SNR) hyperspectral imagery to achieve good performance. Thus,
algorithms that denoise hyperspectral data are worthwhile.

In modern hyperspectral imaging systems, such as AVIRIS [8],
many of the spectral bands have high SNR, but a significant number
of bands (up to 20 percent) are extremely noisy due to atmospheric
effects. Many researchers in the classification community simply
discard these junk bands when training and testing their hyperspectral
data classification algorithms [7], [12]. An algorithm that denoises
and recovers these junk bands would allow them to be used in clas-
sification systems. This will lead to higher classification performance,
especially if the recovered bands contain spectral features useful for
discriminating between classes.

Current denoising techniques. Several techniques exist to denoise
hyperspectral data on a band-by-band basis. Since each band is a two-
dimensional (2-D) image, one might consider using a Wiener filter,
since this method provides the minimum mean-square error (MSE)
estimate of an image from its noisy observation. However, this is
infeasible in many cases because it requires second-order statistics
that are typically unavailable.

A more feasible and useful denoising technique is wavelet thresh-
olding or shrinkage, pioneered by Donoho and Johnstone [5], [6]. In
this method, one performs a 2-D Discrete Wavelet Transform (DWT)
on an image and then soft thresholds the coefficients in the detail
subbands.

Atkinson et al. created a denoising technique that uses Dis-
crete Fourier Transforms (DFTs), 2-D Discrete Wavelet Transforms
(DWTs), and soft thresholding of wavelet coefficients to denoise
hyperspectral imagery [1]. The DFTs exploit signal correlation across
bands, but only to a limited extent, since they are signal independent.
Furthermore, this algorithm uses complex wavelet transforms and

performs soft thresholding on complex coefficients, the latter of which
is not explained in their paper.

A different approach. We propose two algorithms: the first de-
noises an entire data cube while the second recovers user designated
junk bands. Both algorithms utilize a combination of wavelet and
sparse approximation techniques, as discussed below.

The first algorithm denoises each band in a data cube. It exploits
correlation across a set of band images, enforcing sparsity on the
wavelet representations of the images in a simultaneous, non-linear
manner. This sparsity-enforcing technique is inspired by recent work
in the array processing community [10].

The second algorithm is for junk band recovery. To use this
technique, the user designates a set of high SNR “good bands” and a
set of noisy “junk bands.” After first determining the sparsity profile
of the good bands’ wavelet coefficients, the algorithm forces each
of the junk bands to have a similar sparsity profile, which denoises
them simultaneously. To the best of our knowledge, our junk band
recovery algorithm is a novel idea.

Organization of the paper. We start by introducing the basics
of hyperspectral data, wavelet theory, and sparse approximation in
Section II. We explain our proposed denoising algorithms in Section
III and present experimental results in Section IV. Finally, we
conclude our paper, providing ideas for future work.

II. BACKGROUND

Hyperspectral imagery. Hyperspectral sensors collect surface
reflectance data at hundreds of closely spaced wavelengths. Thus, for
each pixel in an imaged scene, we obtain a spectrally overcomplete
look at a point on the surface. This oversampled representation is
useful for classifying each pixel’s contents [13].

Hyperspectral imagery is thus a data cube, having two spatial
dimensions and a third spectral dimension. Fixing the wavelength
band yields a 2-D image of the scene at a particular wavelength, so
hyperspectral imagery may also be visualized as a stack of 2-D band
images, each corresponding to a certain wavelength. Since the bands
are so closely spaced in wavelength, sets of band images are highly
correlated.

Wavelet theory. Wavelets are a popular multiresolution analysis
technique in the image compression, denoising and remote sensing
communities. Using wavelets to decompose a signal allows one to
capture broad, general behavior as well as localized, high-frequency
content [15]. A wavelet basis is formed by shifts and scales of a single
mother wavelet; in the DWT, this wavelet is shifted and scaled by
powers of two.

In this paper, we perform wavelet analysis on a band-by-band
basis, so 2-D DWTs are used. They are implemented via Mallat’s
efficient filterbank structure [11]. Wavelet scaling coefficients capture
the broad, smooth structure of each image, whereas detail coefficients



capture higher frequency, localized behavior (e.g., edges). For all
experiments in this paper, we use the Daubechies order-2 wavelet
(“db2”) and a 4-level wavelet decomposition.

Sparsity of wavelet representations. Applying a 2-D DWT to an
image corrupted by additive white Gaussian noise (AWGN) results
in a sparse representation. That is, in terms of magnitude, only a few
of the wavelet coefficients are large (those containing signal + noise),
and the majority are small (noise only) [15]. Wavelet-based denoising
algorithms exploit this compactness of the true signal in the wavelet
domain by zeroing out the noise coefficients while retaining signal
coefficients; the most prevalent denoising method is to soft threshold
each coefficient [5], [6].

Let I be an N x M noisy image. Let WJ(·) and W−1
J (·) denote

the 2-D DWT and 2-D Inverse DWT (IDWT) operators, respectively.
Then, in the sense of the above discussion, WJ(I) is a sparse matrix.
Lexicographically arranging WJ(I) into a column vector results in a
sparse vector (rearranging the elements of a matrix has no effect on
their sparsity). Let us denote the lexicographic ordering of a matrix
into a vector by vec(·).

Wavelet representations of hyperspectral imagery. As men-
tioned above, band images within a cube are highly correlated in
high SNR situations. Let {Ii}T

i=1 be a set of high SNR band
images that form a data cube. Based on our discussion above, each
ti = vec(WJ(Ii)) is sparse, and the sparsity profiles of the {ti}
are similar. By “sparsity profile,” we mean the set of indices where
large-magnitude coefficients are located.

If we are no longer in a high SNR situation, then the {Ii} are noisy
and the {ti} no longer necessarily have the same sparsity profiles.
The wavelet representations of the true signals within each of the
noisy Ii, however, should have the same sparsity pattern (identical
to the pattern in the high SNR case).

Sparse approximation. The goal of sparse approximation is to
find a vector of unknowns with a small number of nonzero elements
such that a system of equations (approximately) holds.

Consider a linear system of equations where we have more un-
knowns than equations, e.g., y = Ax, where y ∈ �M , A ∈ �M x N ,
x ∈ �N , and M < N . This problem is ill-posed because there are
infinitely many x that solve the system.

Consider, however, enforcing sparsity on x by requiring it to have
few nonzero coefficients. This is the same as requiring that ||x||0
be small, where || · ||0 is a pseudo-norm equal to the number of
nonzero elements of the vector input argument. Introducing a sparsity
constraint on x makes the problem more challenging. For example,
the following optimization problem is NP-complete [4]:

min
x

‖x‖0 s.t. y = Ax.

Thus, finding the sparsest x when the system is large is computation-
ally infeasible. Let us relax the problem and minimize the l1 norm
of x rather than its number of nonzero elements:

min
x

‖x‖1 s.t. y = Ax.

This problem is convex and quickly solved via a linear program;
furthermore, various empirical studies have shown that minimizing
the l1 norm of x usually leads to a sparse solution (e.g., [3]).

Let us now perturb the system with a noise vector, n ∈ �N , such
that y = Ax+n. Due to the noise, it is unlikely that a sparse x exists
such that Ax exactly equals y. A more practical solution is to find a
sparse x that approximately solves the noisy system. The following
optimization is useful to find such an x:

min
x

(1 − λ)‖y − Ax‖2 + λ‖x‖1. (1)

The first term of (1) keeps the residual error down, whereas the
second enforces sparsity on x. As the regularization parameter, λ,
is increased from zero to one, the algorithm yields sparser and
sparser solutions and the residual error increases. Thus, λ is a control
parameter that trades off sparsity versus residual error.

Now suppose we have a set of noisy vectors, yi = Axi + ni,
i = 1, . . . , T . Letting Y = [y1 , . . . , yT ] and X = [x1 , . . . , xT ],
we generalize (1) into a program that finds an X that approximately
solves Y = AX , with the constraint that each column of X (i.e.,
each of the xi) have a similar sparsity profile. We pose the problem
as follows:

min
X

(1 − λ)‖Y − AX‖F + λ‖X‖S, (2)

where ‖X‖F is the Frobenius norm of X and ‖X‖S is the l1 norm of
the l2 norms of the rows of X . The latter operator is a simultaneous
sparsity norm: it penalizes the program (i.e., produces large values)
when the columns of X have dissimilar sparsity profiles and rewards
the program (i.e., produces small values) when the columns of X
have similar sparsity profiles. More details about this simultaneous
sparsity norm and (2) may be found in [10].

Reformulating (2) into a Conic-Quadratic Program allows one to
solve the problem with optimization software. For experiments in
this paper, we use the SeDuMi toolbox [14]. Using SeDuMi, (2)
is solvable in a reasonable amount of time on a modern personal
computer when the number of variables (i.e., the number of elements
of X) is under a thousand.

III. PROPOSED DENOISING ALGORITHMS

In this section, we summarize our denoising and junk band
recovery algorithms. The first algorithm takes a noisy data cube as
input and outputs a denoised cube. The second denoises junk bands
by enforcing the sparsity profiles of known good bands on the junk
bands.

Denoising algorithm. In Section II, we explained that band images
in a high SNR data cube are correlated, and thus their wavelet
coefficients have similar sparsity patterns. Let {Ii}T

i=1 be a set of
noisy band images. There is a true (non-noisy) image within each
Ii, each of which has a similar sparse representation in the wavelet
domain. Our algorithm exploits this fact, seeking to recover the clean
images within each noisy Ii by imposing the same sparsity pattern
on the wavelet coefficients of each Ii.

Let Îi denote a denoised version of Ii, i.e., an estimate of the true
signal within the noisy Ii. If we could denoise the Ii perfectly, then
each Îi would be sparse in the wavelet domain and each would have
a similar sparsity pattern.

By using the sparse approximation framework described in Section
II, we can formulate an optimization problem to enforce our sparsity
assumption across the {Ii}. Our program will penalize the lack of
sparsity of wavelet representations of the band images. We now
outline and explain the algorithm:

1. Perform a J-level 2-D DWT on each Ii, setting aside the
scaling coefficients and lexicographically arranging the ND detail
coefficients into a vector, di ∈ �ND .

2. Let D = [d1, . . . , dT ].
3. For each i, we want to find a d̂i that is close to di in an
l2 norm sense, while at the same time making sure that the d̂i

are simultaneously sparse. Letting D̂ = [d̂1, . . . , d̂T ], we restate
the problem: find a D̂ that is close to D in the Frobenius-norm
sense and whose columns have similar sparsity profiles. This is
accomplished via:



TABLE I
PERFORMANCE OF DENOISING ALGORITHMS WITH σ = 250. DA IS OUR

ALGORITHM; DU, AT, HS, SL, AND MM ARE THRESHOLD-SELECTION

ALGORITHMS FOR WAVELET-BASED DENOISING TECHNIQUES. THE

MSE/104 BETWEEN EACH DENOISED BAND IMAGE AND THE

CORRESPONDING ORIGINAL BAND IMAGE IS LISTED.

σ = 250 DA DU AT HS SL MM
MSE1 2.38 3.86 3.63 4.05 4.05 3.76
MSE2 1.93 3.61 3.29 3.77 3.76 3.12
MSE3 1.72 3.66 3.37 4.02 4.01 3.23
MSE4 1.69 3.82 3.21 3.91 3.99 3.21
MSE5 1.75 4.75 3.93 5.29 5.03 3.84
MSE6 1.97 5.64 4.73 6.55 6.53 4.62
MSE7 2.20 6.60 5.19 7.67 7.64 5.43
MSE8 2.21 6.89 5.52 8.05 7.83 5.65
MSE9 2.50 7.76 5.90 8.73 8.84 6.10
MSE10 2.37 7.64 5.96 8.79 9.23 6.35
MSEµ 2.07 5.43 4.47 6.08 6.09 4.53

min
D̂

(1 − λ)‖D − D̂‖F + λ‖D̂‖S. (3)

A solution to (3) exists because it is a special case of (2). We
assume that λ is well-chosen such that the residual error is small
and the columns of D̂ are simultaneously sparse; this is not an
unreasonable assumption (see Section IV).
Note that when the band images Ii have many pixels, their
wavelet representations have many detail coefficients, matrix D
has thousands of elements, and (3) is too large to solve. To
circumvent this issue, we use a divide-and-conquer strategy: D
is partitioned into a set of submatrices, each of which is estimated
individually using SeDuMi; these estimated submatrices are then
assembled to form D̂.

4. Each column of D̂ contains the denoised detail coefficients of
image Ii. Extract the columns of D̂ to yield {d̂i}. Reform a set
of 2-D wavelet coefficients using the Ii’s scaling coefficients and
the denoised detail coefficients d̂i. Perform a 2-D IDWT on this
data, yielding Îi, a denoised version of Ii.

Junk band recovery algorithm.

1. Let {Gi}K
i=1 and {Ji}T

i=1 be sets of user designated good bands
and junk bands, respectively. The first set contains bands with
high SNR, the latter is comprised of those with low SNR that
classification researchers normally discard from their data cubes.

2. Compute Gµ =
∑K

i=1 Gi. Averaging K high SNR observations
of essentially the same scene results in a Gµ with negligible noise.
Let gµ = vec(detailCoeffs(WJ(Gµ))); this vector will have an
obvious sparsity profile since Gµ has negligible noise.

3. Compute di = vec(detailCoeffs(WJ(Ji))), i.e., perform a 2-D
DWT on each of the Ji, arranging their detail coefficients into
columns. Let D = [d1, . . . , dT ].

4. Let G = [D, gµ], i.e., append gµ to the matrix D.
5. Our goal is to find a matrix D̂ with two properties—its columns
should be close to those of D, and each column of D̂ should have
a sparsity profile similar to gµ’s. We find such a matrix by solving
the following problem:

min
Ĝ

(1 − λ)‖G − Ĝ‖F + λ‖Ĝ‖S. (4)

If G is too large to compute all entries of Ĝ at once, we apply
the divide-and-conquer strategy from the first algorithm to (4).

TABLE II
PERFORMANCE OF DENOISING ALGORITHMS WITH σ = 500.

ALGORITHM LABELS ARE THE SAME AS IN TABLE I. THE MSE/104

BETWEEN EACH DENOISED BAND IMAGE AND THE CORRESPONDING

ORIGINAL BAND IMAGE IS LISTED.

σ = 500 DA DU AT HS SL MM
MSE1 3.9 4.3 4.3 4.4 4.3 4.1
MSE2 3.3 4.4 4.2 4.4 4.3 4.1
MSE3 3.2 5.1 4.4 4.9 5.0 4.8
MSE4 3.1 5.0 4.8 5.1 5.1 4.1
MSE5 3.7 6.8 6.0 7.0 7.2 5.4
MSE6 4.2 8.7 7.6 8.7 8.9 6.8
MSE7 4.8 10.5 8.3 10.9 10.4 7.9
MSE8 5.2 11.1 9.2 11.7 11.3 8.4
MSE9 5.6 11.9 9.7 12.7 12.7 9.3
MSE10 5.6 11.8 9.6 12.9 12.8 9.4
MSEµ 4.3 8.0 6.8 8.3 8.2 6.4

6. Extract D̂ from the resulting Ĝ. Assuming λ is properly chosen,
the columns of D̂ will have gµ’s sparsity pattern.

7. Analogous to the first algorithm, for each i, recover a denoised
version of junk band Ĵi by doing a 2-D DWT on Ji’s original
scaling coefficients and its denoised detail coefficients (the ith
column of D̂).

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our algorithms
by performing several experiments and discussing their results.

In the first experiment, we add white Gaussian noise to high SNR
real data. We test the effectiveness of our proposed denoising algo-
rithm and compare its performance to denoising via soft thresholding
of wavelet coefficients. Performance is judged by analyzing MSE
between the denoised and original images. The second experiment
uses real data and provides a set of good bands and junk bands for
use in the junk band recovery algorithm. The performance of the
algorithm is judged qualitatively by analyzing the recovered junk
bands.

Experiment data. We use a subset of an AVIRIS data cube
available from [9]. Our data cube is comprised of 220 band images,
each 64 x 64 pixels in size. Each pixel, p, of each band image
represents surface reflectivity; p ∈ {0, 1, . . . , 10000}.

Denoising experiment. To test our denoising algorithm, we perturb
the first ten bands of the data cube (all of which have high SNR)
with zero-mean AWGN with a known standard deviation σ. We then
run our algorithm (using a specified value for λ) and measure its
performance by computing the MSE between the denoised bands
and the corresponding original bands. We use MSE as our metric
because of its wide use in the denoising community for comparing
different algorithms [2].

We also denoise the images using standard Donoho-Johnstone
wavelet thresholding techniques [5], [6]. The images are denoised
individually (on a band-by-band basis) and an MSE is computed
for each image. The performance of various global soft thresholding
techniques is evaluated.

Denoising results. Tables I and II list the MSEs of various
algorithms when the noise perturbing the cube has a standard de-
viation (σ) of 250 and 500, respectively. In each table, our denoising
algorithm is denoted by DA. The other labels correspond to global
soft thresholding techniques: DU, AT, HS, SL, and MM stand for
Donoho’s VisuShrink universal threshold ([6]), Atkinson’s threshold
([1]), “heursure,” “sqtwolog,” and “minimaxi,” respectively. Imple-
mentations of the latter three thresholding algorithms are available



Fig. 1. Denoising Experiment. From left to right: the original, noisy (σ =
500), DA-denoised (MSE4 = 3.1e4), and MM-denoised (MSE4 = 4.1e4)
images of band 4.

from the Wavelet Toolbox within MATLAB. MSEi is the MSE
between the denoised version of the noisy ith band and the original
ith band; MSEµ is the average MSE over all ten bands.

Looking at Tables I and II, one sees that our algorithm outperforms
all global soft thresholding techniques in terms of MSE.

For the results in Table I (when σ = 250), the MSE between each
noisy band image and its corresponding original image should be
approximately 6.25 · 104 (or 6.25 if such a value appeared in the
table). We see from the results that some of the MSE/104 values
resulting from global soft thresholding techniques (DU, HS, SL, and
MM) are greater than 6.25, meaning that these algorithms actually
worsen the MSE of some bands. Compared to all the other techniques,
our algorithm (DA) results in lower MSEs for each band image
(i.e., removes more noise from each band image), outperforming the
others.

For the results in Table II (when σ = 500), the MSE between each
noisy and original band image should be approximately 25 · 104 (or
25.0 in the table). Since all of the values in Table II are much less
than 25.0, this means that all of the denoising techniques are useful,
significantly reducing the noise added to each image. Our technique
results in lower MSE values and outperforms the others.

In Figure 1, the original band 4 image, its noisy version (σ = 500),
the DA-denoising result, and the MM-denoising result are displayed
from left to right. The DA result has an MSE of 3.1e4, whereas the
best global soft thresholding result, MM, has an MSE of 4.1e4. In
this case, it is clear that as the MSE increases from 3.1e4 to 4.1e4,
the quality of the denoised image quickly degrades.

In addition to global thresholding, the author performed multi-level
soft thresholding of several noisy image bands using an interactive
wavelet denoising tool in MATLAB and was unable to produce better
looking imagery than the DA results.

Additional comments. In the sense of fairness, we discuss the
downsides of our algorithm. First, there is currently no automated
method to find a good value for the regularization parameter, λ.
Thus, the author experimented with different choices of λ, ultimately
setting it equal to 0.153 and 0.160 for the σ = 250 and σ =
500 experiments, respectively. Second, our algorithm takes several
minutes to run on a personal computer, whereas the soft thresholding
methods take only seconds.

Junk band recovery experiment. For this experiment, we identify
bands 104 through 113 as junk and bands 114 through 135 as good.
The top row of Figure 2 shows junk bands 104, 108, 110, and 111.
We run the junk band recovery algorithm and analyze the results
qualitatively.

Junk band recovery results. After running the algorithm, each of
the junk bands is denoised to some extent. Referring to Figure 2, band
104 seems less noisy. Band 108’s original version is almost totally
obscured by noise, whereas the recovered version has noticeable
edges and features. The denoised junk bands might now be useful in
classification systems.

Fig. 2. Junk Band Recovery Experiment. Top row (left to right): junk bands
104, 108, 110, and 110. Bottom row: the results of the junk band recovery
algorithm for the same four bands.

V. CONCLUSIONS

We have effectively denoised hyperspectral data and recovered
junk bands by imposing constraints on the wavelet representations
of hyperspectral images, exploiting the inherent correlation across
band images via an optimization program. Our denoising algorithm
outperforms widely used global and multi-level wavelet thresholding
techniques in an MSE and a qualitative sense.

This work poses several interesting questions: Is it possible to avoid
decomposing the optimization problem into many subproblems? Can
the algorithm’s performance be improved by using a different type
of wavelet? Is there a fast, automated method to determine λ?
Most importantly, will recovering junk bands lead to significant
improvements in classifier performance?
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