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Abstract—In this paper, we propose a new nonlinear di-
mensionality reduction method by combining Locally Linear
Embedding (LLE) with Laplacian Eigenmaps, and apply it
to hyperspectral data. LLE projects high dimensional data
into a low-dimensional Euclidean space while preserving local
topological structures. However, it may not keep the relative
distance between data points in the dimension-reduced space
as in the original data space. Laplacian Eigenmaps, on the
other hand, can preserve the locality characteristics in terms of
distances between data points. By combining these two methods,
a better locality preserving method is created for nonlinear
dimensionality reduction. Experiments conducted in this paper
confirms the feasibility of the new method for hyperspectral
dimensionality reduction. The new method can find the same
number of endmembers as PCA and LLE, but it is more accurate
than them in terms of endmember location. Moreover, the new
method is better than Laplacian Eigenmap alone because it
identifies more pure mineral endmembers.

I. INTRODUCTION

Hyperspectral imaging has recently become one of the most
active research areas in remote sensing. Hyperspectral imagery
possesses much richer spectral information than multispectral
imagery because the number of spectral bands in hyper-
spectral imagery is in the hundreds instead of in the tens.
This larger data volumes produced by hyperspectral sensors
present a challenge to traditional data processing techniques.
Conventional classification methods may not be used without
dimension reduction as a preprocessing step. This is due to
the ’curse’ of dimensionality. A number of methods have
been developed to mitigate the effects of dimensionality
on information extraction from hyperspectral data, such as
Principal Component Analysis (PCA) [1], Minimum Noise
Fraction (MNF) [2], and Linear Discriminate Analysis (LDA)
[3]. They all depend on linear projection and can result in lose
of nonlinear properties of the original data after reduction of
dimensionality.

In hyperspectral remote sensing, nonlinear properties are
originated from the multi-scattering between photons and
ground targets, within-pixel spectral mixing, and scene het-
erogeneity. We briefly review a few methods for hyperspec-
tral dimensionality reduction here. Plaza et al. [4] described
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sequences of extended morphological transformations for di-
mensionality reduction and classification of high-dimensional
remote sensed hyperspectral datasets. Harsanyi and Chang [5]
investigated hyperspectral image classification and dimension-
ality reduction by using an orthogonal subspace projection
approach. Wavelet transforms have been used in hyperspectral
data dimensionality reduction ([6], [7]). Wavelet transforms
can preserve the high and low frequency features during
the signal decomposition, hence preserving the peaks and
valleys found in typical spectra. Wang and Chang [8] pro-
posed three ICA-based dimensionality reduction methods for
hyperspectral data. Their methods are better than PCA and
MNF in their experiments. Locally Linear Embedding (LLE)
proposed by Roweis and Saul ([9], [10]) is a nonlinear feature
extraction method that projects high dimensional data into
a low-dimensional Euclidean space while preserving local
topological structures. However, the computational complexity
of this method is very intensive in computation and memory
consumption. Belkin and Niyogi [11] developed the Laplacian
Eigenmap for dimensionality reduction, and it preserves the
relative distance between data points. More recently, Chang
and Yeung [12] proposed robust locally linear embedding for
nonlinear dimensionality reduction, and they demonstrated that
the method is better suited for outlier problem. Chen and Qian
[13] improved the existing LLE by introducing a spatial neigh-
bourhood window for hyperspectral dimensionality reduction.

In this paper, we develop a novel nonlinear dimension-
ality reduction method by combining LLE with Laplacian
Eigenmaps. LLE projects high dimensional data into a low-
dimensional Euclidean space while preserving local topolog-
ical structures. However, it may not maintain the distance
between data points in the dimension-reduced space as in
the original space. We know that Laplacian Eigenmaps can
preserve the relative distances between data points. Therefore,
the combination of these two methods leads to a better locality
preserving method for nonlinear dimensionality reduction. We
conducted experiments for a hyperspectral datacube and we
found that the new method is promising in dimensionality
reduction. The new method is better than PCA, LLE, and
Laplacian Eigenmaps in terms of endmember extraction.
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The organization of the paper is as follows. Section II
reviews the basic concept of LLE and Laplacian Eigenmaps.
Section III proposes a new technique for reducing the di-
mensionality by combining LLE with Laplacian Eigenmaps.
Section IV conducts some experiments for hyperspectral data
dimensionality reduction and endmember extraction. Finally,
Section V draws the conclusions of the paper and gives future
work.

II. REVIEW OF LLE AND LAPLACIAN EIGENMAPS

In this section, we give an overview of two existing non-
linear dimensionality reduction methods, namely, LLE and
Laplacian Eigenmaps.

A. LLE

LLE ([9], [10]) is a nonlinear dimensionality reduc-
tion method that maps high dimensional data into a low-
dimensional Euclidean space while preserving local topologi-
cal structures. LLE assumes that the manifold is well sampled,
i.e., there are enough data. Each data point and its nearest
neighbours lie on or close to a locally linear patch of the
manifold. Therefore, we can approximate a data point xi

by a linear combination of its neighbours. The constrained
weights minimizing the errors satisfy the following property:
for any data point, they are invariant to rotation, scaling and
translation of that data point and its neighbours. LLE is an
unsupervised and non-iterative method, and it avoids the local
minima problems plaguing many competing methods. LLE
approximates high dimensional space with small patches, each
of which can be considered as almost flat. These small patches
are stitched together in the low dimensional space so that
nonlinear structures in the high dimensional space are well
preserved. LLE consists of the following three steps:

1) For each point in the original space xi, find its K nearest
neighbours.

2) Measure reconstruction error resulting from the
approximation of each xi by its nearest neighbours and
calculate the reconstruction weights wi,j such that

min (||xi −
∑

j wi,jxj ||)
st:

∑
j wi,j = 1.

3) Determine the low-dimensional embedding yi that
best preserves the local geometry represented by the
reconstruction weights

min
∑n

i=1(||yi −
∑

j wi,jyj ||)
st: 1/n

∑
i yiy

T
i = I , and

∑
i yi = 0.

The computational complexity of LLE for the three steps are of
order O(dn2), O(dnK3) and O(rn2), respectively, where d is
the input dimensionality, K the number of nearest neighbours,
n the number of data points, r the output dimensionality.

B. Laplacian Eigenmaps

The Laplacian Eigenmap was proposed by Belkin and Niyogi
[11]. They construct a weighted graph with n nodes and a set

of edges connecting the neighbouring points. The algorithm
has three steps:

1) Constructing the adjacency graph. Put an edge between
nodes i and j if xi and xj are close. It can be based on
ε - neighbourhoods or K nearest neighbours.

2) Choosing the weights. There are two ways to choose the
weights:

a) Heat kernel. Set vij = e−
||xi−xj ||2

t if nodes i and
j are connected. Otherwise, put vij = 0.

b) Set vij = 1 if nodes i and j are connected.
Otherwise, put vij = 0.

3) Compute the eigenvalues and eigenvectors for the gen-
eralized eigenvector problem

Lf = λDf

where D = diag{D11, D22, · · · , Dnn} is a diagonal
matrix, Dii =

∑
j vij , and L = D− V is the Laplacian

matrix.

We leave out the eigenvector corresponding to eigenvalue 0,
and use the next bottom r eigenvectors for the embedding
in the reduced dimension space. Laplacian eigenmap is rela-
tively insensitive to outliers and noise because of its locality-
preserving property. It is not prone to short circuiting as only
the local distances are used in the algorithm.

III. DIMENSIONALITY REDUCTION BY COMBINING LLE
WITH LAPLACIAN EIGENMAPS

LLE characterizes the local geometry by linear coefficients
wij that reconstruct each data point xi from its K nearest
neighbours. However, it may not map close data points in
the original space into close data points in the dimension-
reduced space. Laplacian Eigenmap can preserve the relative
distance between data points by incurring a heavy penalty
if neighbouring points xi and xj are mapped far apart. By
combining LLE with Laplacian Eigenmaps, we obtain a new
nonlinear dimensionality reduction method which keeps both
the local geometry and the relative distance between the data
points. The new method has three steps as well:

1) For each point in the original space xi, find its K nearest
neighbours. Also, Put an edge between nodes i and j if
xi and xj are close.

2) Measure reconstruction error resulting from the ap-
proximation of each xi by its nearest neighbours and
calculate the reconstruction weights wi,j according to
LLE. Also, choose the weight vij according to Laplacian
Eigenmaps.

3) Determine the low-dimensional embedding yi that best
preserves the local geometry and the relative distance
between data points by solving the following optimiza-
tion problem:

min
∑n

i=1 ||yi −
∑K

j=1 wijyj ||2 + 1
2

∑n
i,j=1 ||yi − yj ||2vij

st : 1
nY Y T = I,
Y l = 0.

1-4244-1212-9/07/$25.00 ©2007 IEEE. 271



where Y = [y1, y2, · · · , yn]r×n, I is the identity matrix,
and l = [1, 1, · · · , 1]T . The weights vij incurs a heavy
penalty if neighbouring points xi and xj are mapped far
apart.

We know that
∑n

i=1 ||yi −
∑K

j=1 wijyj ||2
=

∑
ij(δij − wij − wji +

∑
k wkiwkj) < yi, yj >

= tr(Y (I − W )(I − W )T Y T )
= tr(Y MY T )

where M = (I −W )(I −W )T , < yi, yj > is the dot product
of yi and yj , and W = [w1, w2, · · · , wn]. also,

∑
i,j ||yi − yj ||2vij

=
∑

i,j{||yi||2 + ||yj ||2 − 2 < yi, yj >}vij

=
∑

i ||yi||2Dii +
∑

j ||yj ||2Djj − 2
∑

i,j vij < yi, yj >

= 2
∑

i ||yi||2Dii − 2
∑

i,j vij < yi, yj >

= 2
∑

k

∑
i(y

k
i )2Dii − 2

∑
k

∑
i,j vijy

k
i yk

j

= 2{tr(Y DY T ) − tr(Y V Y T )}
= 2{tr(Y (D − V )Y T )}

where D = diag{D11, D22, · · · , Dnn} and Dii =
∑

j vij .
The constrained minimization problem can be done by using

the Lagrange multipliers

L(Y ) = Y MY T + Y (D − V )Y T + (NI − Y Y T )Λ.

Setting the gradients with respect to Y to zero, we have

2MY T + 2(D − V )Y T − 2Y T Λ = 0.

therefore we need to solve the following symmetric
eignevalue problem:

(M + D − V )Y T = Y T Λ.

It is easy to show that l = [1, 1, · · · , 1]T is an eigenvector
corresponding to eigenvalue 0. Discarding this eigenvector
enforces the constraint that the embeddings have zero mean by
virtue of orthogonality. The remaining r bottom eigenvectors
form the embedding in the reduced dimension space. Since
M + D − V is a large sparse symmetric matrix, we can
use any well known eigensolver to solve it. In this paper,
we use the eigs() function in Matlab to calculate a few
smallest eigenvalues (in magnitude) and their corresponding
eigenvectors.

IV. EXPERIMENTAL RESULTS

In this section, we conduct some experiments in Matlab
for hyperspectral data dimensionality reduction in order to
demonstrate the feasibility of the proposed method in this
paper. We use a Pentium-4 PC with a 3.20GHz CPU and 1G
RAM for our experiments. Our datacube was acquired using
an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
in the Cuprite mining district, Nevada, by Jet Propulsion
Laboratory (JPL) in 1997. The original scene with size of
614 × 512 pixels and 224 bands is available online at http :

//aviris.jpl.nasa.gov/html/aviris.freedata.html. As in [8],
we cut out the upper-right corner of the scene that consists of
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Fig. 1. The AVIRIS Cuprite scene at wave-length 827nm (spectral band
#50).

350×350 pixels and 224 bands. This scene is well understood
mineralogically and it has been made a standard test site
for validation and in assessment of endmember extraction
methods. Also as in [8] and [14], due to water absorption and
low signal-to-noise ratio (SNR), we remove the bands 105-115
and bands 150-170 in our experiments. As a result, a total of
192 bands are used in our experiments. Fig. 1 shows the image
of the datacube at wavelength 827nm (spectral band #50).
As mentioned in [8], in this scene there are five ground-truth
endmembers for minerals: alunite at (62,161), buddingtonite
at (209,234), calcite at (30,347), kaolinite at (22,298), and
muscovite at (33,271). In our experiments, we only extract a
region of 64 × 64 pixels (see the black thick line square in
Fig. 1) for testing our hyperspectral dimensionality reduction.
We set the number of nearest neighbours for reconstruction
to 26, that is, K = 26. The output dimensionality is set to
r = 10.

We conducted experiments for endmember extraction of a
hyperspectral image with a region of 64 × 64 pixels. Within
this region, only two ground-truth endmembers in the original
350 × 350 image scene are present: kaolinite at (22,298) and
muscovite at (33,271). Endmember extraction is one of the
fundamental tasks in hyperspectral image analysis. We extract
endmembers using Pixel Purity Index (PPI) [15] available
in Environment for Visualizing Images (ENVI) 4.2 software
system [16] developed by Research Systems, Inc. In our
experiments, we set the number of iterations in PPI parameters
to 10000, and the threshold factor to 1. We do not generate the
final PPI-found endmembers using the cluster mean spectra
of the data points in the extreme corners of the data cloud.
Instead, we select individual pixels falling into the corners of
the data cloud and use those pixel signatures as the final end-
member set. Table I tabulates the spectral angles (in degrees)
between the ground-truth endmembers and the endmembers
extracted from the data sets after the dimensionality being
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TABLE I
THE SPECTRAL ANGLES (IN DEGREES) BETWEEN THE GROUND-TRUTH ENDMEMBERS AND THE ENDMEMBERS EXTRACTED WITH PCA, LLE,

LAPLACIAN EIGENMAPS, AND THE PROPOSED METHOD BY USING PPI.

Ground-truth Endmembers
Reduction Extracted kaolinite muscovite buddingtonite calcite alunite
Methods Endmembers (22,298) (33,271) (209,234) (30,347) (62,161)

(23,304) 0.03 0.14 0.18 0.22 0.10
PCA (20,281) 0.13 0.07 0.09 0.12 0.14

(56,303) 0.24 0.14 0.12 0.05 0.24
(23,304) 0.03 0.14 0.18 0.22 0.10

LLE (19,281) 0.13 0.07 0.08 0.12 0.15
(56,304) 0.25 0.15 0.12 0.07 0.25

Laplacian (22,298) 0.00 0.13 0.17 0.21 0.10
Eigenmaps (26,278) 0.13 0.08 0.07 0.10 0.14

(22,298) 0.00 0.13 0.17 0.21 0.10
proposed method (33,270) 0.13 0.04 0.09 0.11 0.15

(63,274) 0.16 0.08 0.07 0.11 0.16

reduced to r = 10 from 192 using PCA, LLE, Laplacian
Eigenmaps, and the proposed method, respectively. From the
table we can see that PCA, LLE, Laplacian Eigenmaps, and
the new method find three, three, two, and three endmembers,
respectively. From the number of endmembers that the new
method can find we know that the new method is comparable
to PCA and LLE, and it is better than Laplacian Eigenmaps.
In addition, by looking at the location of the endmembers
extracted by the new method, we know that it finds one end-
member (kaolinite) at exactly the same location as the ground-
truth endmember at (22,298). Also, it finds another endmember
(muscovite) that has only one pixel shift from the ground-truth
endmember at (33,271). On the other hand, both PCA and
LLE find endmembers at locations that are far away from the
ground-truth endmembers. Laplacian Eigenmaps identifies one
exact ground-truth endmember at (22,298) as well. However,
it only finds two endmembers in total which are less than
other methods tested in this paper. Therefore, the new method
proposed in this paper is better than PCA, LLE, and Laplacian
Eigenmap in endmember extraction.

V. CONCLUSIONS

A new nonlinear dimensionality reduction method is proposed
in this paper by combining LLE with Laplacian Eigenmaps.
The new method overcomes the drawback of LLE, i.e., it
may map close data points in the original space into non-
close data points in the dimension-reduced space. This is
because Laplacian Eigenmap keeps the relative distance be-
tween neighbouring points. We conducted experiments for
hyperspectral data analysis and found that the new method is
better than PCA, LLE, and Laplacian Eigenmap in identifying
pure mineral endmembers.
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