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Abstract—We propose a new feature selection algorithm for 
remote sensing image classification. Our approach has been 
especially devised for applications in which there is a large 
number of different features that can be potentially selected, 
implying that the search space is complex and high-dimensional. 
In this framework, our proposal is that of reformulating the 
feature selection problem as the search for the optimal subspace 
in which the different classes are more effectively discriminated. 
The search has been performed by using a genetic algorithm in 
which each individual encode the choice of a subspace, and its 
fitness is a measure of the class seperability in that subspace. The 
experimental results, performed on two databases, confirmed the 
effectiveness of the approach. 

Remote sensing, image classification, feature selection 

I.  INTRODUCTION 
Production of land cover maps from satellite images is an 

important application field in remote sensing. To solve this 
problem, several feature based classification techniques have 
been proposed in the literature. However, the complexity and 
the performance of systems based on these techniques strongly 
depends on the set of features that are used [1]. The selection of 
an effective set of features is then a key problem to be solved in 
remote sensing image classification [2-5]. 

Feature selection consists in taking a set of candidate 
features and selecting a subset of them providing the most 
discriminative power among different classes, under some 
classification systems. This procedure can reduce not only the 
cost of recognition, by reducing the number of features that 
need to be collected, but in some cases it can also provide 
better classification accuracy: in fact it allows to discard the 
features that contribute to increase the variability within 
specimen belonging to the same class without increasing the 
capability to discriminate specimen belonging to different 
classes. 

The need for selecting effective feature sets is particularly 
relevant in all the problems where a large number of different 
features can be defined. Examples of such problems are: 

• applications where data taken by multiple sensors are 
fused; 

• integration of multiple models, where all the parameters 
from the different models can be used for classification;  

• data mining applications, where the goal is to recover 
the hidden relationships among the features. 

In this framework, our proposal is that of reformulating the 
feature selection problem as the definition of the optimal 
mapping between an initial, possibly very high-dimensional 
feature space of dimension N, and a M-dimensional subspace 
(with M ≤ N), in which the different classes are more 
effectively discriminated. The mapping can be established by 
using a binary vector b, belonging to a N-dimensional binary 
space, whose k-th element is equal to one if the k-th feature is 
included in the feature subspace, while is zero in the opposite 
case. The selection of the optimal mapping is performed by 
finding the M-dimensional subspace which maximizing a 
specifically defined class separability index. Under this 
hypothesis, finding the optimal solution means to find the 
binary vector b corresponding to the optimal M-dimensional 
subspace, where the search space has cardinality 2N. This 
search space is generally quite complex because, in the 
majority of remote sensing image classification problems, N is 
a high number (typically greater then 100) and this implies that 
efficient search algorithms must be used. 

In this context, systems based on Evolutionary Algorithms 
(EAs) seem to offer an effective methodology, as they are 
based on a powerful tool for finding solutions in complex high 
dimensional search spaces, where there is no a priori 
information about the samples distribution [6-8]. They 
typically work on a population of individuals each one 
representing a possible solution of the problem to be solved, 
which can be encoded in many different way. The algorithm 
starts by generating an initial population of individuals. Then, 
the “goodness” of each individual as solution of the problem at 
hand is measured by means of a fitness function. After this 
evaluation process, a new population is generated by choosing 
in the current one the individuals to be modified by suitable 
operators. These choices are made by a stochastic process 
called selection, which favors the reproduction of individuals 
having higher fitness in order to generate, if possible, new and 
better, individuals. Nevertheless, the individuals having lower 
fitness are not completely excluded from the process 
generating the new population. This process is repeated until 
one or more stop conditions are not satisfied. 

In our case, we have used a Genetic Algorithm (GA) in 
which each individual I is an N-dimensional binary vector 



representing the set of features included in the M-dimensional 
subspace. As regards the fitness function, we have used the 
above mentioned class separability index. According to this 
choice, at the end of the evolutionary process, the individual I 
representing the optimal set of features, should be obtained. 

The remainder of the paper is organized as it follows: 
Section II introduces the basic concepts relative to Genetic 
Algorithms. Section III provides a detailed description of the 
considered set of features. Section IV illustrates the 
architecture of the method. Section V reports the experimental 
results and some concluding remarks. 

II. GENETIC ALGORITHMS 
Genetic Algorithms are a class of search algorithms 

inspired by the mechanisms of Biological Evolution and 
Adaptation of species [6]. They have been successfully applied 
to a large variety of both numerical and combinatorial 
optimization problems with noisy, real-valued functions. To 
this purpose, the search space points are preliminarily coded 
into bit strings, and the function to optimize is interpreted as a 
fitness function, i.e. as a measure of the ability of the individual 
to survive and reproduce. 

The features that make GA suitable for optimization 
problems can be summarized as follows:  

• they do not require any specific knowledge about the 
problem at hand, but only values of the function to be 
optimized; 

• they can explore several regions of the configuration 
space simultaneously and by means of the selection the 
search process is concentrated on the most promising 
regions. 

• by using probabilistic transition rules, they are able to 
manage landscapes with a wide number of local optima. 

Starting from a population of tentative solutions for the 
problem at hand, GA iteratively generates new solutions by 
means of a selection mechanism together with the genetics-
inspired operators of crossover and mutation, hoping to evolve 
the population towards the most promising regions of the 
solution space. The algorithm is repeated until a termination 
criterion is satisfied. The solutions are encoded by means of 
“chromosomes” which consist of strings of “genes”, e.g. bits, 
whose values are called “allele”. The selection mechanism is 
aimed to choosing the chromosomes in the population in such a 
way that better chromosomes, i.e. those having higher fitness 
values, have higher chances to be chosen for reproduction and 
for genetic manipulation. 

As regards the genetic operators, the crossover exchanges 
parts of two selected chromosomes, thus generating two 
offspring, while mutation works by randomly changing the 
allele in some location of the chromosome. It is worth noticing 
that these two operators must be applied with probabilities, 
called crossover rate and mutation rate respectively, whose 
values typically depend on the specific considered problem. 
This implies that preliminary experiments must be performed 
for selecting effective values for these probabilities. Finally, as 
termination criterion, it is possible to consider only the 
maximum number of generations or to add other criteria based 

on specific requirements on the fitness function to be 
optimized. 

III. THE CONSIDERED FEATURES 
There are variants of texture analysis methods, but the 

texture measures based on the grey-level co-occurrence 
matrices (GLCM) [9], are among the most widely used in the 
analysis of remote sensed imagery [5]. Previous studies 
indicated that GLCM is very suitable for finding texture 
information in images of natural scenes and performs well in 
classification applications [10]. Therefore, GLCM based 
textures should be appropriate also for the analysis of Landsat 
images. 

Co-occurrence texture features are extracted from an image 
in two steps. First, in a user defined moving kernel (window)  a 
grey level co-occurrence matrix (GLCM) are computed by 
measuring the spatial frequency of co-occurrence of pixel grey 
levels separated by a given displacement vector d=(dx,dy). 
Second, a set of different scalar quantities (features) can be 
computed for summarizing the information contained in a 
matrix GLCM. 

A co-occurrence matrix is a two-dimensional array, P, in 
which both the rows and the columns represent a set of possible 
image values. Given a direction d in the moving window (0°, 
45°, 90°, 135°), each element Pd[i,j] of the grey-level co-
occurrence matrix represents the relative frequency with which 
two neighbouring pixels separated by a distance of dx columns 
and dy lines occur, one with grey tone i and the other with grey 
tone j. 

The co-occurrence matrix Pd has dimension L×L, where L is 
the number of grey levels in the kernel selected. Because the 
size of a GLCM matrix depends on the data range of pixel grey 
values, images of large numbers of data bits may result in large 
GLCM matrix sizes and require a large amount of computer 
resources (memory and CPU cycles). As a result, it is a 
practical necessity to reduce the co-occurrence matrix size for 
better computational performance. More importantly, because 
GLCM approximates the joint probability distribution of two 
pixels, reducing the matrix size will also reduce the number of 
zero-value cells in a matrix, which in turn will improve the 
statistical validity. A common technique to reduce GLCM 
matrix sizes is to rescale image grey levels to a lower data bit 
number. It has been demonstrated that reduction of grey levels 
causes only minor degradation (about 3%) in classification 
accuracy [11]. Therefore, the original 256 image grey level 
used in this study was rescaled to 32 level data before GLCM 
processing. 

Starting from GLCM, different features can be computed. 
Haralick [9] originally proposed 14 different features; however, 
typically only a subset of these are used. He also suggested 
calculating each of the 14 measures for the four directions. 

The set of features adopted in this paper include textural 
features such as Contrast (Inertia), Homogeneity, Entropy, 
Energy or Angular second moment (ASM), Correlation, Sum 
Average, Sum Variance, Sum Entropy, Difference Average, 
Difference Variance, Difference Entropy, Information Measure 
of Correlation 1, Information Measure of Correlation 2, and the 



spectral feature NDVI (Normalized Difference Vegetation 
Index). A detailed description of these features can be found in 
[9]. 

IV. THE ARCHITECTURE OF THE METHOD 
As anticipated in the Introduction, we have reformulated 

the feature selection problem as the problem of finding the 
optimal mapping between the initial N-dimensional feature 
space and a M-dimensional subspace in which the different 
classes are more effectively discriminated. More specifically, 
let Y be the initial set of features, with cardinality N and let X a 
subset of Y with cardinality M ≤ N. Selecting the optimal set of 
features means to find a subset X ⊂ Y which maximizes a class 
separability index J(X) [5]: 
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The mapping between the initial N-dimensional feature 
space and a M-dimensional subspace, can be established by 
using a binary vector b, belonging to a N-dimensional binary 
space, whose k-th element is equal to one if the k-th feature is 
included in the feature subspace, while is zero in the opposite 
case. According to this assumption, the class separability index 
can be expressed as a function of b and eq. (1) becomes as:  
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We have defined the class separability index J(b) in the 
following way: 
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where u() denotes the Heaviside function (unitary step 
function), d() denotes the Euclidean distance between two 
feature vectors and o  denotes the Hadamard product. In the 
formula K is the number of classes, nk is number of elements 
belonging to the class k, Yki is the feature vector representing 
the i-th element of class k, and Yck is the centroid of class k. 
The centroids of all the classes have been determined by 
considering a training set of labeled pattern, represented as 
feature vectors in the initial N-dimensional feature space. For 
each class, the corresponding centroid is computed by 
averaging the components of all the feature vectors 
representing patterns of that class. 

According to the above definition, the value of J(b) 
coincides with the recognition rate achievable by considering a 
Nearest Neighbor classifier which uses as prototypes the 
centroids Yck in the subspace identified by the vector b. The 
maximization of this function aims to find the subspace in 
which both the distances between each element of a class and 
the centroids of all the other classes are maximized, and the 
distances between each element of a class and the 
corresponding centroid are minimized. 

The selection of the optimal vector b has been performed 
by using an evolutionary algorithm. In particular we have used 
a Genetic Algorithm in which the individuals are encoded as 

binary vectors belonging to the space 2N. The fitness of each 
individual I is evaluated by computing the value J(I). Once the 
best solution is found, the corresponding features are used to 
implement a classifier in that subspace. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
The proposed approach has been tested by using two 

different Landsat Satellite databases. The first one (DB1 in the 
following) is the standard database Satimage included in the 
UCI database repository [12]. This database was generated 
from Landsat Multi-Spectral Scanner image data. Each frame 
consists of four digital images of the same scene in different 
spectral bands. Two of these are in the visible region 
(corresponding approximately to green and red regions of the 
visible spectrum) and two are in the (near) infra-red. Each pixel 
is a 8-bit binary word, with 0 corresponding to black and 255 to 
white. The spatial resolution of a pixel is about 80m×80m. The 
database contains 6435 patterns belonging to 6 different 
classes, namely: red soil, cotton crop, grey soil, damp grey soil, 
soil with vegetation stubble and very damp grey soil. The 
patterns are organized in two sets of data: a training set (TR1 in 
the following) containing 4435 samples and a test set (TS1 in 
the following) containing 2000 samples. Each pattern 
corresponds to a 3×3 square neighborhood of pixels and is 
described by considering the pixel values in the four spectral 
bands of each of the 9 pixels in that neighbourhood. To each 
pattern is assigned as label the class of the central pixel. Thus, 
each pattern of the database is represented by a feature vector 
of 36 integer values in the range [0,255]. 

The second database (DB2 in the following) contains data 
relative to a satellite image of a residential area (city of Anzio, 
Italy) and was recorded by the ETM sensor, which has a 
ground spatial resolution of about 30m×30m and six spectral 
bands. Each pixel is a 8-bit binary word, with 0 corresponding 
to black and 255 to white. Each pattern corresponds to a 3×3 
square neighborhood of pixels and contains 54 attributes (6 
spectral bands × 9 pixels in the neighbourhood), resulting in a 
feature vector of 54 integer values in the range [0,255]. The 
data were divided into a training set (say TR2) with 800 
samples and a test set (say TS2) with 712 samples, randomly 
extracted from the original Landsat 7 scene. In this scene five 
classes must be discriminated, namely: water, grey soil, wood, 
urban area, sea sand and bare soil. 

In our experiments, we have considered the whole set of 
features described in Section III. In particular, the GLCM 
matrices were computed from the original data using a 3×3 
moving window in four directions (0°, 45°, 90°, 135°) and for 
13 textural measurements. As a result, each pattern in database 
DB1 has been described by using a feature vectors of 213 
elements (4 pixel values in the spectral bands + 13 texture 
features × 4 directions × 4 spectral bands + 1 NDVI). 
Similarly, each pattern in database DB2 has been described by 
using a feature vectors of 319 elements (6 pixel values in the 
spectral bands + 13 texture features × 4 directions × 6 spectral 
bands + 1 NDVI). 

Some preliminary experiments have been performed to tune 
the parameters of the Genetic Algorithm. Moreover, we have 
modified the fitness function adding a term which penalizes the 



individuals with a high number of bit 1 in the chromosome (i.e. 
those including a high number of feature). Thus, the fitness 
function F assume the form: 
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where NFT is the total number of features, NF(I) is the number 
of features considered by individual I and k is a constant 
assuming in our experiment the value 0.5. The GA has been 
executed 15 times for each run with different initial 
populations, in order to reduce the effects of the stochastic 
fluctuations due to the randomness of the search. At the end of 
a run, the best individual has been stored. Finally, the best 
individual discovered over the 15 runs has been selected and 
the corresponding set of features assumed as the result of the 
feature selection algorithm. In Table I we have reported the 
results relative to both databases. 

TABLE I.  NUMBER OF FEATURES DISCOVERED BY THE GA 

Statistics relative to 15 runs of the GA  
Number of 

features of the best 
individual 

Average number of 
features 

Standard deviation 
of the number of 

feature  
DB1 8 6,2 1,22 
DB2 11 9,4 1,85 
 
The effectiveness of the selected features has been tested by 

using them to implement a simple and widely adopted neural 
network classifier: the Multi Layer Perceptron (MLP) trained 
with the Back Propagation algorithm [13]. For the sake of 
comparison, we have also implemented a MLP classifier using 
as features only the values of the central pixel in each spectral 
band, and a MLP classifier considering also the information of 
the 3×3 neighbourhood. The results relative to DB1 (see Table 
II) show that the overall accuracy is improved when 
information relative to the neighbourhood of each pixel are 
added to the feature set. They also show that the proposed GA 
has selected an effective set of features which allows to obtain 
a further slight improvement in the recognition rate, but using 
only 8 features rather than 36, as in the previous case. Similar 
considerations can be repeated for the results relative to DB2 
(see Table III), but in this case there are no improvements in 
the recognition rate adding neighbouring information. This is 
mainly due to the fact that the considered image is very 
fragmented and characterized by the presence of many small 
adjacent regions belonging to different classes. As it obvious, 
in this situation the probability that adjacent pixels belong to 
different classes becomes higher, making less reliable the use 
of neighbouring information for pixel description. On the 
contrary, the set of features selected by the GA produces a 
considerable improvement in the recognition rate with a 
negligible increase of the number of features. 

In conclusion, the experiments confirmed the effectiveness 
of the proposed approach, which allows to reduce very much 
the number of selected features without reducing, or in some 
case increasing, the obtainable performance: for the database 
DB1, the initial feature set includes 213 features and the GA 
has selected only 8 features. Similarly, for database DB2, the 
initial feature set includes 319 features and the GA has selected 

only 11 features: the use of such features produced an increase 
of the recognition rate from 74.8 % to 77.6%. 

TABLE II.  RESULTS OF THE MLP CLASSIFIER RELATIVE TO DB1 

4 features  
Spectral Bands 

36 features 
3x3 Neighbourhood 

8 features  
Selected by GA hidden 

nodes TR1 TS1 TR1 TS1 TR1 TS1 

30 85,19% 84,00% 90,38% 87,60% 89,10% 87,40% 
40 85,10% 83,80% 90,14% 87,20% 89,16% 88,00% 
50 85,15% 83,80% 90,38% 87,80% 89,26% 87,40% 
 
TABLE III.  RESULTS OF THE MLP CLASSIFIER RELATIVE TO DB2 

6 features  
Spectral Bands 

54 features 
3x3 Neighbourhood 

11 features  
Selected by GA hidden 

nodes TR2 TS2 TR2 TS2 TR2 TS2 

30 84,95% 74,80% 92,37% 74,80% 87,73% 77,20% 
40 84,85% 74,80% 92,28% 74,60% 87,75% 77,60% 
50 85,25% 75,00% 92,90% 72,20% 88,98% 77,00% 
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