A multiprocessing Framework for SAR Image
Processing

Christian Andres, Torben Keil, Raik Herrmann and Rolf Sbeei
Microwaves and Radar Institute
German Aerospace Center (DLR)
Oberpfaffenhofen
Email: [christian.andres, torben.keil, raik.herrmaroif.scheiber]@dlr.de

Abstract—This paper introduces a framework developed for 1 T:typename .
image processing of synthetic apterure radar (SAR) imagesdt en- I _dimension:int .
capsulates features of modern hardware architectures, inading I _BlockPolicy:typenamg
symmetric and asymmetric multiprocessing, within an easy ad I AllocPolicy:typenamg
intuitive to use application programming interface (API). The o ____ 1
multiprocessing part is designed for unified usage of diffeent Array

architectures reaching from multicore processors to clustr of
workstations to grids of clusters. So an applcation using th
framework can be ported from one architecture to another
without any changes in the source code. The framework builds Fig. 1. Array boundary template
the bottom layer of the processing system developed for the
German Aerospace Center's (DLR) new airborne SAR sensor,
the F-SAR [1].

application developer, encapsulating all the multipreces
I. INTRODUCTION possibilities.

The German Aerospace Centers new airborne SAR s@)-Policy based problem decomposition

sor (F-SAR) gets more and more operative, an(_j first dataFirst of all, the framework is designed for speed. Therefore
sets are already acquired. Therefore new requirements _t

: i a %ew rules were taken into account:
the processing software appear, in terms of data rates an

operational modes. Due to the massive amount of data, the avo!d data copy as often as possible,

processing time required for one data acquisition (without * avoid branchgs_,_ :
interferometry) has been estimated from 8 to 28 hours using® <€€P the flexibility necessary for SAR processing.

one AMD Athlon64 CPU at 2.2GHz. So new strategies fdf object oriented design, flexibility is often achievedngsi
data handling and processing are required. Therefore a nelymorphism. The problem with polymorphism is, that the
processor implementation is done. The processor implem&f@nch it replaces, is just handled transparently by thepdem
tation is realized object oriented using the C++ prograngnthSing virtual function pointers, but it is not eliminated.
language which was identified to achieve maximum speed afidnethod to eliminate those branches is the policy based clas
flexibility. The processor will provide support for differe configuration introduced in [2]. Here, the problem is divde
kinds of hardware including symmetrical and asymmetricHto different subclasses (policies) which are passed aerge
multiprocessing architectures. Algorithms are develojpech Parameters to a main class template, which is derived frem th
many different scientists, so a mechanism to handle the méifferent policies. The compiler generates now native s#as
tiprocessing transparenﬂy is required to decrease dpmﬂot for each pOSSlblllty of the class instance. Method calls are
time of the different algorithms. This is encapsulated imita Now native calls, and flexibility is achieved by exchangihg t
numerical framework. policies, which is carried out using generic copy constiet

A. Interface Il. ARRAY ABSTRACTION

The framework is used from many different developers from Many libraries for array abstraction are spread across the
many different countries, most of them barely familiar wittinternet, but most developers prefer to create their own, be
C++ programming. The design goal is to provide a simplause none of those libraries provides exactly the funatitn
interface to the numerical operations, e.g. the easies wig wheeded. SAR processing requires the following features:
the summation of two arrays andy is: « iterating through array lines and columns (avoid corner

turns or subscripts),

« possibility to store different data types including comple
ignoring the fact, that C++ is originally not able to add g=a samples,
The task of the framework is to provide these operators to thes Overlapped block processing

This leads to a generic array compound template taking get parameters
the datatype, the dimensions, the allocation and blocking
policies as meta-parameters (see Fig. 1). The initiabpati
is not implemented as a policy, to simplify cast operations Yy
and programming interface to the application developee Th
following sections describe the significant parts of theaarr
template, the block processing, the allocation and thatitan.

A. lteration

SAR processors need a lot of transposed operations. Con-
ventional processors use two approaches for acomplishing
those tasks:

« turn the array: Tends to be very slow for big data blocks,
« subscripting: Requires a lot of copy operations.

Therefore a unified facility for iterating the array in mplg
dimensions tends to be the more elegant way. A little drawbac
of such iterators is their cache coherency, when iteratigiyer
order arrays. Also the iterator needs to support wrapping to
enable operations of different array dimensions e.g. rbéate

receive data block

send datta block

last data block?

range CompeSSion' Collect data from slaves return data block
B. Allocation

The allocation policy encapsulates memory management of v v
the array template. This is necessary to use the features of ai for <laves to fine ose
modern processors if present, and to prepare fast datareyeha
for small arrays using shared memory. Three policies are
implemented: v

« default: Simply wrapps the C++ new and delete operators, return data to caller process

« aligned: Provides aligned memory allocation, required to
use streaming SIMD extensions (SSE) and multimedigy > Fiowchart of an operation with decomposition to efiéint compo-
extensions (MMX), nents: transport (red), splitter (green) operation (blue)

« shared: Allocates within the shared memory area.

C. Block Policies . data transport to the workers.

To enable parallel processing, the splitting of arrays intphgse policies are descibed in the following sections. The
smaller blocks is required. This can be archieved easyr%undary template is shown in figure 3, including an input

through the iteration concept of the framework. For SAR,mnonent to enable processing of arrays of different data
Processing, different algorithms need different blockcess- types.

ing strategies, in terms of block alignment and overlap, e.g
azimuth compression needs the full azimuth size, wheregs qjjtting

the presumming can operate an variables patches, but needs)))
appropriate overlap. So the block processing was designe(P'ﬁerem architectures require different ways to detaud t

as a policy of the array class, providing the block iteratoMOrker processes from the master process. For a multicore
and allowing fast and easy replacement of the strategy usﬁ)]rgomultlprocessor architecture, a simple fork is sufficidot

generic copy constructors. These different block polisieare & OPENMOSIX cluster [4], an additional process distributio
a common interface allowing the array template to providg?mmand is required and PVM [5] architectures come with a

iterators for different block processing strategies in éied specialized API for process splitting and distributionl thbse
way. environments can be fused to a common interface treated as

the split policy.
IIl. OPERATION

The execution of an operation on multiple processors & Transport
suitable for policy based decomposition, since it can beldiy The transport policy acts similar as the splitting policieT
into the following operational tasks also shown in figure gsk is to wrap the possibilities for data transport regiiire
assuming a simple divide and conquer strategy the different architectures to a common interface, which ca
« execution of the operation itself, be used within the generic operation template. Here, tiamsp
« splitting of the processes, using pipes is required for multiprocessor and OpenMOSIX

TABLE Il
TESTSYSTEM CONFIGURATION

' Input:typename 1
Transport:typename

11— . .
! _splitting: typenam? Processor|| Intel Core2 Duo T7600
Operation CPUs 2
P RAM 2GB
Fig. 3. Boundary operation template

6000

TABLE |
PoLicy COMBINATIONS FOR DIFFERENT ARCHITECTURES

execution time [ms]

architecture, memory transport for single processors afd P
comes with a specialized API either.

IV. COMPLEX ENVIRONMENTS
As mentioned in the last section, different computer archi-

tectures require a dedicated combination of transport plitd SFig. 4. Benchmarks of different operations using singlel)@nd smp (blue)
policies. This policies can be fused to a generic boundagyvironment [top] and ratio of the execution i

template, the Environment. Table | shows the combinatiopi different.

for different architectures. But what happens with nestetlia
tectures, e.g. a PVM connected grid of different OpenMOSIX
clusters build with multicore computers? Of course one aoul

512 024 2048 409
sarl(arroy size)

Architecture Split Policy Transport Policy
Single Processo None Memory
Multicore / CPU Fork Pipe o
OpenMOSIX | Fork / Distribute Pipe T Wm0
PVM pvmspawn pvmtransport 2l penton e sote

256

TABLE Il

512 2048 4096
‘sart(array sz

m&™2_ Note that the scales

tsmngle

BENCHMARKS FOR ADD OPERATION

use the top architecture (PVM in this case) to distribute size | Single CPU | SMP with 2CPU's | Ratio
. . 0,
multiple workers to the different nodes. The drawback of 128 | 0.072ms 1.943ms 2698.61%
)) R 256 | 0.284ms 4.202ms 1479.58%
this strategy is, that the overhead for PVM _dlstnbutlon is 512 | 1.232ms 15.692ms 1273.70%
a lot higher than the overhead for Fork splitting. The solu- 1024 | 5.834ms 53.965ms 925.009%
tion to gain the best performance for each environment is iggg 28%93365% égs-ggéms ;ig-gggﬁ)
H H H . .soms . ms . (0}
to comblne. cpmplete algorlthr_ns to higher order operations 8197 | 344 383ms SABLB8MS T1867%
executed within a stack of environments. For example a SAR
Range Doppler processor can be treated as an operation TABLE IV
composed of different sub-operations e.g. range and akimut BENCHMARK FOR SINUS OPERATION
compression, which contain multiple atomic operationg lik _ _ _ _
add or FFT. Therefore, one could spread the complete Range | S8 | Single CPU | SMP with 2CPU's | _Ratio
: . . 128 2.997ms 4.787ms 159.726%
Doppler algorithm across the PVM architecture, paralie§z 556 | 12.000ms 8.979ms =4.7689%
the sub-operations across the OpenMOSIX clusters and use [512 | 48.276ms 34.125ms 70.6873%
multiple processors for the atomic operations. To achieve ;85;1 igi'gggms f&ﬁ‘gﬂs ;i-gggigf
H H : . ms . ms . (1)
suph a behavior mgltlple envwonments need to be copnectgd 7096 1853 01ms 1947 87ms 67 3429%
using the GOF chain of responsiveness pattern [3]. Thisnchai 8192 | 7302.59ms 2992.1ms 68.3607%

can be configured to activate the appropriate environment
during the process runtime. This can be used to control the
parallelization granularity of the algorithm at runtimeithw A
the drawback of a minimal overhead for one cast operation.

Atomic Operations

Of couse preconfigured operations can be used, eliminatindrhe first investigation should demonstrate the possibilfty
this cast. parallelizing single (atomic) operations. Fig. 4 showstth
a simple add operation is faster using just one processor.
V. RESULTS Here, the parallelizing overhead outnumbers the execution
The framework has been tested within the architectutiene of the operation significantly. The second graph shbws t
specified in table Il. For this test system, only the covetprenchmark of a sinus operation, which executes signifigantl
tional forking symmetrical multiprocessing, and the singlfaster when using two processors. The sinus operation can be
processor environment is applicable. Each benchmark usedr2ated as the ‘break even point’, where parallelizatiots ge
dimensional single precision complex arrays. practical, at least for multiprocessor architectures.

range doppler using different environments Relation to single processor

Data ingest

\ 4

Quadrature demodualtion

512 1024 2048 4086 192 512 1024 2048 4095 8192
Asimuth block sizs [somples] Asimuth block size

Doppler centroid estimation Fig. 6. Benchmark of the range doppler algorithm using 1 &ser (red),
fine granular SMP (cyan) and coarse granualar SMP (blue)

TABLE V
PoLicy COMBINATIONS FOR DIFFERENT ARCHITECTURES

<—

Presumming

size | Single CPU | fine grained | Coarse grained
512 3128.48ms | 2883.81ms 1689.57ms
1024 | 6097.26ms | 5628.93ms 3259.66ms
2048 | 12779.5ms 11088.8ms 6473.26ms
Range Compression 4096 | 25418.3ms | 22250.7ms 13176.3ms
8192 | 50300.1ms | 44554.9ms 26404.2ms

«—

<«

Doppler centroid correction approach shows the expected speed improvement.

VI. CONCLUSION AND OUTLOOK

This paper showed a generic approach for providing a
Azimuth compression unified framework for symmitric and asymmetric multipro-
cessing adapted to purpouses of SAR processing. Althowgh th
framework is especially developed for SAR image processing
it can be used for each task requiring numerical operations
Multilooking on large datasets. It was demonstrated, that multipraugssi
is applicable for rather “short” operations. With the skatk
environment chains a step into abstract parallel programgmi
using compiled languages has been done.

The most important improvement is the operation-adaptive
environment chain, which will improve the fine-grained ex-
Fig. 5. Flow chart of a range doppler processor for airborA® $hcluding ecution of operations. Also, the implementation of many
doppler centroid estimation and presumming numerical and image processing operations is requiredtto ge
a fully featured image processing library.

| €——

€—

«—

Save Data

B. Range Doppler Processing REFERENCES
To test the stacked environments, a simple Range Doppigr F-SAR - The new airborne SAR system

processor adapted for airborne SAR processing was usedggtloé{"g;"‘gsd'zrgg;hf’e”’desktoPdEfa““-aSpX/‘abmﬁ/377@read'5691
(See Flg: 5). Also real samp_led 'np.Ut data was used f%)Andrei AlexandrescuModern C++ Design, Generic Programming and
the algorithm was extended with a Hilbert transform based Design Patterns Applied Addison-Wesley, 2001 ISBN 0-20432-5
fast quadrature demodulation. Also a, in airborne proogssil3l Erich Gamma, Richard Helm, Ralph Johnson, and John idéssDesign

ical . . £ d. Th . Patterns, Elements of Reusable Object-Oriented Software Addison-
typical, presumming step is performed. The processing Was \yesley, 1994 ISBN 0-201-63361-2
carried out with two different environments, a combinatadn [4] openMosix, an Open Source Linux Cluster Project
single and multiprocessing environment and vice versas Tfﬂi http.flopenmosix.sourcefarge.net/ date: 25-04-2007

. L. . . 5] PVM: Parallel Virtual Machine http://www.csm.ornl.gov/pvm/ date:

represents two different granularities, for atomic ogerst 25.04-2007
and for combined algorithms. Also just one CPU was used
for reference purpose.

Fig. 6 shows the results of the benchmarking. It is visi-
ble, that the fine grained parallelizing does not perform as
good as expected in the preceeding section. The improvement
from the complex operations is nearly taken from the simple
operations drawback. An operation adaptive chain, pragidi
the optimal environment for each operation should improve

the fine grained approach. The result of the coarse grained

