
A multiprocessing Framework for SAR Image
Processing

Christian Andres, Torben Keil, Raik Herrmann and Rolf Scheiber
Microwaves and Radar Institute

German Aerospace Center (DLR)
Oberpfaffenhofen

Email: [christian.andres, torben.keil, raik.herrmann, rolf.scheiber]@dlr.de

Abstract—This paper introduces a framework developed for
image processing of synthetic apterure radar (SAR) images.It en-
capsulates features of modern hardware architectures, including
symmetric and asymmetric multiprocessing, within an easy and
intuitive to use application programming interface (API). The
multiprocessing part is designed for unified usage of different
architectures reaching from multicore processors to cluster of
workstations to grids of clusters. So an applcation using the
framework can be ported from one architecture to another
without any changes in the source code. The framework builds
the bottom layer of the processing system developed for the
German Aerospace Center’s (DLR) new airborne SAR sensor,
the F-SAR [1].

I. I NTRODUCTION

The German Aerospace Centers new airborne SAR sen-
sor (F-SAR) gets more and more operative, and first data
sets are already acquired. Therefore new requirements to
the processing software appear, in terms of data rates and
operational modes. Due to the massive amount of data, the
processing time required for one data acquisition (without
interferometry) has been estimated from 8 to 28 hours using
one AMD Athlon64 CPU at 2.2GHz. So new strategies for
data handling and processing are required. Therefore a new
processor implementation is done. The processor implemen-
tation is realized object oriented using the C++ programming
language which was identified to achieve maximum speed and
flexibility. The processor will provide support for different
kinds of hardware including symmetrical and asymmetrical
multiprocessing architectures. Algorithms are developedfrom
many different scientists, so a mechanism to handle the mul-
tiprocessing transparently is required to decrease development
time of the different algorithms. This is encapsulated within a
numerical framework.

A. Interface

The framework is used from many different developers from
many different countries, most of them barely familiar with
C++ programming. The design goal is to provide a simple
interface to the numerical operations, e.g. the easies way write
the summation of two arraysx andy is:

z = x + y, (1)

ignoring the fact, that C++ is originally not able to add arrays.
The task of the framework is to provide these operators to the

Fig. 1. Array boundary template

application developer, encapsulating all the multiprocessing
possibilities.

B. Policy based problem decomposition

First of all, the framework is designed for speed. Therefore
a few rules were taken into account:

• avoid data copy as often as possible,
• avoid branches,
• keep the flexibility necessary for SAR processing.

In object oriented design, flexibility is often achieved using
polymorphism. The problem with polymorphism is, that the
branch it replaces, is just handled transparently by the compiler
using virtual function pointers, but it is not eliminated.
A method to eliminate those branches is the policy based class
configuration introduced in [2]. Here, the problem is divided
into different subclasses (policies) which are passed as generic
parameters to a main class template, which is derived from the
different policies. The compiler generates now native classes
for each possibility of the class instance. Method calls are
now native calls, and flexibility is achieved by exchanging the
policies, which is carried out using generic copy constructors.

II. A RRAY ABSTRACTION

Many libraries for array abstraction are spread across the
internet, but most developers prefer to create their own, be-
cause none of those libraries provides exactly the functionality
needed. SAR processing requires the following features:

• iterating through array lines and columns (avoid corner
turns or subscripts),

• possibility to store different data types including complex
samples,

• overlapped block processing



This leads to a generic array compound template taking
the datatype, the dimensions, the allocation and blocking
policies as meta-parameters (see Fig. 1). The initialization
is not implemented as a policy, to simplify cast operations
and programming interface to the application developer. The
following sections describe the significant parts of the array
template, the block processing, the allocation and the iteration.

A. Iteration

SAR processors need a lot of transposed operations. Con-
ventional processors use two approaches for acomplishing
those tasks:

• turn the array: Tends to be very slow for big data blocks,
• subscripting: Requires a lot of copy operations.

Therefore a unified facility for iterating the array in multiple
dimensions tends to be the more elegant way. A little drawback
of such iterators is their cache coherency, when iterating higher
order arrays. Also the iterator needs to support wrapping to
enable operations of different array dimensions e.g. needed for
range compession.

B. Allocation

The allocation policy encapsulates memory management of
the array template. This is necessary to use the features of
modern processors if present, and to prepare fast data exchange
for small arrays using shared memory. Three policies are
implemented:

• default: Simply wrapps the C++ new and delete operators,
• aligned: Provides aligned memory allocation, required to

use streaming SIMD extensions (SSE) and multimedia
extensions (MMX),

• shared: Allocates within the shared memory area.

C. Block Policies

To enable parallel processing, the splitting of arrays into
smaller blocks is required. This can be archieved easyly
through the iteration concept of the framework. For SAR
Processing, different algorithms need different block process-
ing strategies, in terms of block alignment and overlap, e.g.
azimuth compression needs the full azimuth size, whereas
the presumming can operate an variables patches, but needs
appropriate overlap. So the block processing was designed
as a policy of the array class, providing the block iterators
and allowing fast and easy replacement of the strategy using
generic copy constructors. These different block policiesshare
a common interface allowing the array template to provide
iterators for different block processing strategies in a unified
way.

III. O PERATION

The execution of an operation on multiple processors is
suitable for policy based decomposition, since it can be divided
into the following operational tasks also shown in figure 2
assuming a simple divide and conquer strategy

• execution of the operation itself,
• splitting of the processes,

Fig. 2. Flowchart of an operation with decomposition to different compo-
nents: transport (red), splitter (green) operation (blue)

• data transport to the workers.

Those policies are descibed in the following sections. The
boundary template is shown in figure 3, including an input
component to enable processing of arrays of different data
types.

A. Splitting

Different architectures require different ways to detach the
worker processes from the master process. For a multicore
or multiprocessor architecture, a simple fork is sufficient, for
a OpenMOSIX cluster [4], an additional process distribution
command is required and PVM [5] architectures come with a
specialized API for process splitting and distribution. All those
environments can be fused to a common interface treated as
the split policy.

B. Transport

The transport policy acts similar as the splitting policy. The
task is to wrap the possibilities for data transport required in
the different architectures to a common interface, which can
be used within the generic operation template. Here, transport
using pipes is required for multiprocessor and OpenMOSIX



Fig. 3. Boundary operation template

TABLE I
POLICY COMBINATIONS FOR DIFFERENT ARCHITECTURES

Architecture Split Policy Transport Policy
Single Processor None Memory
Multicore / CPU Fork Pipe

OpenMOSIX Fork / Distribute Pipe
PVM pvmspawn pvmtransport

architecture, memory transport for single processors and PVM
comes with a specialized API either.

IV. COMPLEX ENVIRONMENTS

As mentioned in the last section, different computer archi-
tectures require a dedicated combination of transport and split
policies. This policies can be fused to a generic boundary
template, the Environment. Table I shows the combinations
for different architectures. But what happens with nested archi-
tectures, e.g. a PVM connected grid of different OpenMOSIX
clusters build with multicore computers? Of course one could
use the top architecture (PVM in this case) to distribute
multiple workers to the different nodes. The drawback of
this strategy is, that the overhead for PVM distribution is
a lot higher than the overhead for Fork splitting. The solu-
tion to gain the best performance for each environment is
to combine complete algorithms to higher order operations
executed within a stack of environments. For example a SAR
Range Doppler processor can be treated as an operation
composed of different sub-operations e.g. range and azimuth
compression, which contain multiple atomic operations like
add or FFT. Therefore, one could spread the complete Range
Doppler algorithm across the PVM architecture, parallelizing
the sub-operations across the OpenMOSIX clusters and use
multiple processors for the atomic operations. To achieve
such a behavior multiple environments need to be connected
using the GOF chain of responsiveness pattern [3]. This chain
can be configured to activate the appropriate environment
during the process runtime. This can be used to control the
parallelization granularity of the algorithm at runtime, with
the drawback of a minimal overhead for one cast operation.
Of couse preconfigured operations can be used, eliminating
this cast.

V. RESULTS

The framework has been tested within the architecture
specified in table II. For this test system, only the coven-
tional forking symmetrical multiprocessing, and the single
processor environment is applicable. Each benchmark used 2-
dimensional single precision complex arrays.

TABLE II
TEST SYSTEM CONFIGURATION

Processor Intel Core2 Duo T7600
CPU’s 2
RAM 2GB

Fig. 4. Benchmarks of different operations using single (red) and smp (blue)
environment [top] and ratio of the execution timetsmp

tsingle
. Note that the scales

are different.

TABLE III
BENCHMARKS FOR ADD OPERATION

size Single CPU SMP with 2CPU’s Ratio
128 0.072ms 1.943ms 2698.61%
256 0.284ms 4.202ms 1479.58%
512 1.232ms 15.692ms 1273.70%
1024 5.834ms 53.965ms 925.009%
2048 20.935ms 152.861ms 730.170%
4096 83.36ms 599.335ms 718.972%
8192 344.383ms 2461.88ms 714.867%

TABLE IV
BENCHMARK FOR SINUS OPERATION

size Single CPU SMP with 2CPU’s Ratio
128 2.997ms 4.787ms 159.726%
256 12.009ms 8.979ms 74.7689%
512 48.276ms 34.125ms 70.6873%
1024 106.493ms 80.445ms 75.5402%
2048 434.859ms 312.461ms 71.8534%
4096 1853.01ms 1247.87ms 67.3429%
8192 7302.59ms 4992.1ms 68.3607%

A. Atomic Operations

The first investigation should demonstrate the possibilityof
parallelizing single (atomic) operations. Fig. 4 shows, that
a simple add operation is faster using just one processor.
Here, the parallelizing overhead outnumbers the execution
time of the operation significantly. The second graph shows the
benchmark of a sinus operation, which executes significantly
faster when using two processors. The sinus operation can be
treated as the ‘break even point‘, where parallelization gets
practical, at least for multiprocessor architectures.



Fig. 5. Flow chart of a range doppler processor for airborne SAR including
doppler centroid estimation and presumming

B. Range Doppler Processing

To test the stacked environments, a simple Range Doppler
processor adapted for airborne SAR processing was used
(See Fig. 5). Also real sampled input data was used so
the algorithm was extended with a Hilbert transform based
fast quadrature demodulation. Also a, in airborne processing
typical, presumming step is performed. The processing was
carried out with two different environments, a combinationof
single and multiprocessing environment and vice versa. This
represents two different granularities, for atomic operations
and for combined algorithms. Also just one CPU was used
for reference purpose.

Fig. 6 shows the results of the benchmarking. It is visi-
ble, that the fine grained parallelizing does not perform as
good as expected in the preceeding section. The improvement
from the complex operations is nearly taken from the simple
operations drawback. An operation adaptive chain, providing
the optimal environment for each operation should improve
the fine grained approach. The result of the coarse grained

Fig. 6. Benchmark of the range doppler algorithm using 1 Processor (red),
fine granular SMP (cyan) and coarse granualar SMP (blue)

TABLE V
POLICY COMBINATIONS FOR DIFFERENT ARCHITECTURES

size Single CPU fine grained Coarse grained
512 3128.48ms 2883.81ms 1689.57ms
1024 6097.26ms 5628.93ms 3259.66ms
2048 12779.5ms 11088.8ms 6473.26ms
4096 25418.3ms 22250.7ms 13176.3ms
8192 50300.1ms 44554.9ms 26404.2ms

approach shows the expected speed improvement.

VI. CONCLUSION AND OUTLOOK

This paper showed a generic approach for providing a
unified framework for symmitric and asymmetric multipro-
cessing adapted to purpouses of SAR processing. Although the
framework is especially developed for SAR image processing,
it can be used for each task requiring numerical operations
on large datasets. It was demonstrated, that multiprocessing
is applicable for rather “short” operations. With the stacked
environment chains a step into abstract parallel programming
using compiled languages has been done.
The most important improvement is the operation-adaptive
environment chain, which will improve the fine-grained ex-
ecution of operations. Also, the implementation of many
numerical and image processing operations is required to get
a fully featured image processing library.

REFERENCES

[1] F-SAR - The new airborne SAR system
http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776 read-5691
date: 02-05-2007

[2] Andrei Alexandrescu,Modern C++ Design, Generic Programming and
Design Patterns Applied Addison-Wesley, 2001 ISBN 0-201-70431-5

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,Design
Patterns, Elements of Reusable Object-Oriented Software Addison-
Wesley, 1994 ISBN 0-201-63361-2

[4] openMosix, an Open Source Linux Cluster Project
http://openmosix.sourceforge.net/ date: 25-04-2007

[5] PVM: Parallel Virtual Machine http://www.csm.ornl.gov/pvm/ date:
25-04-2007


