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Abstract—As part of the preparation for the European Space
Agency SMOS (Soil Moisture and Ocean Salinity) satellite mis-
sion, empirical sea surface emissivity (forward) models have been
applied to retrieve sea surface salinity from L-band brightness
temperature (TB) measurements. However, the salinity inversion
is not straightforward and an important effort is required to
define the most appropriate cost function (inversion algorithm).

Different Bayesian-based configurations of the cost function
are examined, depending on whether prior information is used
in the inversion or not. It is important to properly balance all the
terms of the cost function, as well as to have a good knowledge
of the quality of the prior information. A sensitivity analysis
shows that the instrument has low sensitivity to the geophysical
parameters that modulate the Tb (including salinity). As such,
the inversion needs to be constrained with prior information.
Simulations are also performed using the SMOS simulator to
assess the retrieval errors produced by the different cost function
configurations. In line with the sensitivity analysis, the errors are
very large when no prior information is used in the cost function.
The lowest errors are obtained when the inversion is constrained
with the full prior information, i.e., information from all the
auxiliary (geophysical) parameters. As such, it is concluded that
the use of prior information is essential for a successful salinity
retrieval from SMOS measurements.

I. SALINITY DETERMINATION BY L-BAND RADIOMETRY

The knowledge of the distribution of the sea surface salinity

(SSS) at a global scale and its inter-annual variability is vital to

understand the ocean role in the Earth climate. The European

Space Agency’s SMOS (Soil Moisture and Ocean Salinity)

mission, due for launch in mid 2008, aims at generating

global SSS maps with a spatial and temporal resolution

adequate for climate and ocean general circulation studies. For

such purpose, an L-band interferometric radiometer with full

polarimetric capability called MIRAS (Microwave Imaging

Radiometer by Aperture Synthesis) will be the SMOS payload.

This instrument will provide at each overpass a 2D image of

the ocean surface brightness temperature, observing the same

point under a wide range of incidence angles, which is crucial

for a successful salinity retrieval.

The forward model or geophysical model function (GMF)

used in this analysis is the Klein and Swift model [1] for

the flat sea and the Hollinger model [2] for the roughness

contribution, described by the wind speed parameter (WS) and

the incidence angle (θ) as follows:

Tbh = 0.2 ∗ (1 + θ/55)WS

Tbv = 0.2 ∗ (1 − θ/55)WS
(1)

The GMF therefore assumes that L-band brightness tempe-

rature measurements of the ocean surface are modulated by the

sea surface temperature (SST) and sea surface salinity (SSS)

(i.e., flat sea contribution) and the sea surface wind speed (WS)

for the roughness contribution.

The inversion is not straightforward since the GMF is

non-linear (flat sea term) and there are three geophysical

parameters to derive (SSS, SST and WS).

A Bayesian approach is used to perform the salinity in-

version. Assuming that measurement errors are Gaussian and

uncorrelated, a quadratic inversion cost function, which allows

to locally invert salinity, is formulated. A suitable definition of

the Bayesian-based cost function is very important to obtain

a good performance in the salinity retrieval process from

SMOS measurements. In this paper, several cost functions are

formulated and tested with simulated data.

II. COST FUNCTION DEFINITION

Three different Bayesian-based cost functions have been

considered: the first one is the case where no prior information

is used, i.e., the cost function consists of an observation term

where all the parameters are ’free’ in the minimization proce-

dure; the second one is the case for which prior (background)

information together with proper characterization of both the

measurement and the background errors are also introduced in

the cost function. Finally, a hybrid configuration considering

prior information on the auxiliary parameters, but not on SSS

is also considered.

When no constraints (prior information) are considered, the

cost function is defined as follows:

χ2 = 1
N

∑N−1
i=0

[ T meas
Bi

−T model
Bi

(θi,SSS,SST,Rough) ]2

σ2

TB

(2)
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where θi is the incidence angles and N is the number

of different observations, Tmeas
Bi

is the measured brightness

temperature, and Tmodel
Bi

is the modelled brightness (obtained

through the forward model).

On the other hand, when constraints are considered the cost

function is defined as follows:

χ2 = 1
N

∑N−1
i=0

[ T meas
Bi

−T model
Bi

(θi,SSS,SST,Rough) ]2

σ2

TB

+
∑

j

[ Pj − Pj prior]
2

σ2
Pj

(3)

where P is the geophysical parameter to be found, with

j possible parameters (i.e.: SSS, SST and WS in our case),

Pprior is a reference value (or prior), for each of the para-

meters (obtained from satellite or model outputs) from which

the final solution should not be far, and σ2
P is the variance of

the expected error of the reference values. The value of P at

the first iteration is the so-called ”first guess” value. Then the

99% of the solutions of P will range from Pprior − 3 ∗ σP

to Pprior + 3 ∗ σP . If a reference value of the parameters is

known with low precision, σP is large, then the term of this

parameter is small, and has less weight in the overall equation.

The third case, the so-called hybrid case, is also formulated

as in 3 but σSSS is set to a very large value to make this term

null.

III. SENSITIVITY ANALYSIS

To get an idea of the instrument sensitivities and their impact

in the different cost function formulations, a visualization of

several cost function cuts (planes) has been carried out for a

pre-defined (simulated) case. The original parameters (truth)

are set to SSSorig = 35 psu, WSorig = 5 m/s and SSTorig

= 20 ◦C. The GMF defined in section I is used to simulate

the Tb values for 55 different incidence angles, from 0◦ to

55◦. Afterwards a Normal Distribution noise with standard

deviation of 2 K has been added to the TBorig
generated, that

ranges in TBh from 94 to 60 K and in TBv from 94 to 140

K.

In the case of using constraints, the references used are as

follows: SSSref = SSSorig +1 psu, WSref = WSorig +1.5
m/s, SSTref = SSTorig + 0.25◦C, and the uncertainties of

these references are set to σSSS = 2 psu, σWS = 2.5 m/s,

σSST = 0.5◦C.

Contour plots have been created for several configurations

of the cost function which show the behavior of the minima

in 2-D (a 2-D cut in a 3-D cost function), and indicate if

more than one minimum is present, and if the minima are

well defined or broad.

Figure 1 plots the cost function behavior when varying

SSS and WS, while SST has been set to the original value.

They show the cases when no constraints (plot a), only one

(plots b, c), or contrains in all parameters are used (plot d).

They present for all the cases a unique minimum and are

located at the following positions: for case a) in SSSmin=35.10

psu and WSmin=5.10 m/s, for case b) SSSmin=35.80 psu

a) b)

c) d)

Figure 1. Cost function value (χ2) contour when varying SSS and WS
parameters for (a) no constraints, (b) with SSS constraints only, (c) with WS
constraints only and (d) when all constraints are used.

and WSmin=6.45 m/s, for case c) SSSmin=35.50 psu and

WSmin=6.45 m/s and for case d) SSSmin=35.80 psu and

WSmin=6.45 m/s.

Plot 1a shows the similar sensitivity of TB to SSS and WS,

as indicated by the broad minimum oriented approximately

along the diagonal of the plot. By increasing or decreasing

both WS and SSS along the major axis of the elliptic contours,

similar cost function values (i.e., similar TB values) are

obtained for a wide range of SSS and WS. This indicates the

low sensitivity of the instrument to both SSS and WS changes.

An indirect but straightforward way to quantify the sensiti-

vity is to compare the weight of the minimum with the

weight of to the cost function points in the vicinity of the

minimum. That is, the probability that a cost function point

corresponds to the true solution can be theoretically calculated

by the following expression: P = exp(−χ2/2), where χ2

is the Maximum Likelihood Estimation [3]. In the case of

no constraints (a) the probability to fall into the minimum is

very similar to the probability to be over the contour line of

χ2=1, which has a quite extensive range of possible solutions

(SSS from 33.5 to 37.5 psu and WS from 2 to 9 m/s). The

probability to be over the contour line of χ2=2 is half of

the probability to find the minimum, and this line includes

almost all the realistic possible solutions. This means that

the sensibility to SSS is very low and that it is very likely

to converge to a solution which is not the real minimum.

Therefore, taking into account that the GMF sensitivities are

realistic, it is clear that a cost function without constraints will

lead to large retrieval errors when real (noisy) TB are used as

input.

When only 1 parameter is restricted (plots b and c), the

range of solutions with meaningful probability is reduced with

respect to no constraints (plot a), but still considerable.



Figure 1d shows that if all the constraints are used the

minimum is well defined. However, the retrieved parameters

tend to the reference values. This was expected since it has

been shown that the observational terms give little information,

but it can be optimized by balancing the observational and

the background terms such that the information content of

the measurements is fully exploited. For such purpose, proper

characterization of both the measurement and background un-

certainties is crucial, and should be done once the satellite will

fly and real data will be acquired (during the commissioning

phase for example).

a) b)

Figure 2. Cost function contour plot when varying SSS and SST parameters
without constraints (a) and with constraints (b).

Figure 2 shows the shape of the cost function when varying

SSS and SST values. When no constraints are used the

function does not have a clear minimum (plot a). The contour

lines are almost vertical which means that TB is very little

sensitive to SST changes (under-determination case), further

confirming the need for a constrained cost function (plot b).

Since the effect of having an error on SST of 0.5◦ on the TB

value is negligible in terms of SSS retrieval accuracy, the SST

could alternatively be fixed (in the inversion) to measured or

modeled values which are known with quite good precision

(around 0.5◦C).

IV. ANALYSIS WITH SIMULATED SMOS IMAGES

The three different cost functions have been also used in

the inversion process to retrieve salinity from SMOS-like

images using a SMOS simulator. The SMOS-like brightness

temperature images have been generated by the SMOS End-

to-end Performance Simulator (SEPS), and the SMOS Level 2

Processor has been used to perform the inversion. These tools

are developed by the Universitat Politècnica de Catalunya [4],

[5].

The simulations have been run using the combined Klein

and Swift and Hollinger models and with the First Stokes

Parameter configuration in the retrieval process. Also a TB

bias cancellation technique has been performed as explained

in [6], [7]. The true values (for SSS, SST, and WS) and

the background uncertainties defined in section III are used

together with the measurement (TB) uncertainties provided by

SEPS. The optimization technique used to retrieve salinity is

the Levenberg-Marquardt algorithm [8].

Figure 3 shows the histograms for the three different confi-

gurations, when no constraints are used (a), when constraints

a1) a2)

b1) b2)

c1) c2)

Figure 3. Histograms and statistics for the retrieved SSS values (1) and the
retrieved WS values (2), for three different cases: when no constraints are
included in the cost function (a), when all the constraints are considered (b)
and when constraints are considered except for SSS parameter (c).

on all the parameters are considered (b) and when no restric-

tion on SSS is considered (c).

Figure 3a exhibits a quasi Gaussian distribution but with

large standard deviation, further confirming the already dis-

cussed effects of the low instrument sensitivities when no

restrictions are considered. Note that the algorithm limits the

range of possible solutions to an upper and a lower bound

(due to the applicability range of the models) such that when

the limit is reached, the inversion stops and no retrieval is

performed. The acceptable ranges are [0,30] m/s in WS,

[20,50] psu in SSS, and [0,35]◦ in SST. When no restrictions

are considered, the processor rejects many points due to an

out of bounds WS solution. As a consequence, the standard

deviation of the distributions in case (a) is substantially smaller

(about half) than if these out of bound cases would have been

considered.

Comparing figures 3b and c, one can notice that the bias

in the retrieved salinity are very similar, but the standard

deviation is smaller for the case of using constraints for all



parameters.

Several studies [9]–[11] have pointed out that if references

on SSS are considered, then the retrieved SSS tends to the

reference value, which is not the expected result. Figure 4

plots the difference between the retrieved and reference (or

auxiliary) salinity (a) and also the difference between the

retrieved and the original (truth) salinity values from the

above simulations, for all the pixels of the field of view.

It can be clearly appreciated that for the analyzed case, the

retrieved salinity is not equal to the reference value. More-

over, the results in figures 3 and 4 show that more accurate

retrieved salinities are obtained when the cost function is fully

constrained (also with SSS), if this is done with realistic

uncertainties.

a) b)

Figure 4. Difference between retrieved and reference SSS (a) and between
retrieved and original SSS (b) from the simulations results.

V. CONCLUSIONS

A sensitivity analysis is performed by looking at the shape

of the different cost functions tested in this paper. When no

constraints are considered, the minimum of the cost function is

broad, which means that the sensitivity of TB to SSS and WS

changes is very low. This indicates that to properly retrieve

salinity constraints are necessary.

The very low sensitivity of TB to SST variations is ma-

nifested, so restrictions on SST are mandatory. Alternatively,

SST can be fixed in the inversion process to a known (auxi-

liary) value.

It is essential to do a proper balancing between the observa-

tions and the background terms of the cost functions, to avoid

that the retrieved parameter tends to the reference value.

From the SMOS simulations performed one can conclude

that better results are obtained when all the constraints are

considered. Also, from a theoretical point of view, there is no

reason for not using the constraints on SSS, provided that the

cost function is properly balanced and that all uncertainties

are well characterized.

The authors therefore recommend to revisit the cost function

algorithm as defined in the SMOS level 2 processor documen-

tation (see ATBD description in [12]). More work should be

done to fully characterize the SMOS inversion algorithm.
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