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Abstract—A new method for segmenting polarimetric Syn-
thetic Aperture Radar (POLSAR) data is proposed. Image
segmentation is formulated as a graph partitioning problem.
Spectral graph partitioning – known to provide perceptually
plausible image segmentation results using one or more cues (e.g.,
similarity, proximity, contour continuity) – is applied on POLSAR
image data. The degree of similarities between pairs of pixels are
calculated based on contour information. Graph partitioning is
performed using the Multiclass Spectral Clustering method that
minimizes the normalized cut cost function to ensure minimal
similarity between partitions. The resulting segmentation is an
approximation to the global optimal solution. C-band POLSAR
data acquired by CV-580 are used for testing the performance.
The results are found to closely agree with manual segmentations.

I. INTRODUCTION

Spaceborne Synthetic Aperture Radar (SAR) systems with
polarimetric modes are among the most important tools used
in today’s remote sensing tasks. A number of satellite systems
are already operational or soon will be (e.g., ENVISAT, ALOS,
TerraSAR-X, RADARSAT-2). Large volumes of data need to
be analysed and interpreted on a daily basis, thus automated
procedures are required. Segmentation is an important initial
step for data interpretation and is a very challenging task
to automate. However, visual interpretation of SAR image
data by human experts is relatively easy, yet time consuming.
Established techniques for polarimetric SAR data analysis
(e.g., polarimetric decomposition [1], Wishart classifier and
its variants [2], [3]) have the following shortcoming – they do
not utilize the visual content and global information available
in image data. The main focus of our work is to utilize
some of this information that helps humans perform image
segmentation so well.

For many problems in computer vision, the ultimate goal
is to reach the performance level of the human vision system
(HVS). This may be possible through a good understanding of
how humans handle the task. For humans, an image represents
more than a collection of pixels: it is a meaningful organization
of objects or patterns. In the 1930s, Gestalt psychologists
studied this important phenomenon – perceptual organization
– and reported several factors that contribute to this process:
similarity, proximity, contour continuity, symmetry and clo-
sure. These are known as cues in the psychology literature.

Over the last few decades, research in computer vision
has sought methodologies that can utilize these ideas for
solving grouping problems. Recently, a promising technique

based on pairwise affinities (i.e., similarities) has emerged.
The degree of similarity between pairs of data points is
encoded in a pairwise affinity matrix and the grouping task
is performed using spectral graph partitioning [4], [5]. This
approach allows contributions from multiple cues like the HVS
does, and offers a way to obtain a globally optimal solution.
Therefore, segmentation results that are perceptually plausible
(i.e., consistent with how humans perceive) can be produced.
This makes spectral graph partitioning a promising candidate
for automated analysis and interpretation of SAR data.

Ersahin et al. [6] used this technique on polarimetric SAR
images for the first time, where the affinity matrix was
formed using patch-based similarity and proximity between
pairs of pixels. In this paper, we take a different approach
to compute the pairwise affinities. Contour information (i.e.,
directional image features such as field boundaries) is utilized
via orientation energy. Preliminary results obtained using the
proposed scheme are found to be more homogenous than
the Wishart classifier output, and they closely agree with the
manual segmentations. Detailed analysis that compares the
performance to state-of-the-art techniques is underway.

II. SPECTRAL GRAPH PARTITIONING

Both clustering and image segmentation can be formulated
as a graph partitioning problem. This is achieved by repre-
senting a set of points in an arbitrary feature space using
an undirected graph G = {V, E}, where V and E are the
nodes and the edges, respectively. Each node on the graph
corresponds to a data point and an edge between two nodes,
u and υ, is associated with a weight, ω(u, υ), that indicates
the similarity between u and υ according to some criterion.
In general, G is a fully connected graph (i.e., each node is
connected to all the other nodes). For bi-partitioning such a
graph, it is intuitive to minimize the similarity of candidate
partitions (i.e., cut). cut(V1, V2) represents the similarity of
candidate partitions V1 and V2. It is quantified by the sum of
the weights between the nodes in V1 and the nodes in V2.
However, minimizing the cut favors partitions with isolated
nodes. This bias can be avoided by minimizing the normalized
cut (ncut):

ncut(V1, V2) =
cut(V1, V2)

assoc(V1, V )
+

cut(V1, V2)
assoc(V2, V )

(1)

where assoc(V1, V ) is the sum of the weights between the
nodes in V1 and all the nodes in the graph, V .



Shi and Malik [4] showed that finding a global minimum
for the ncut cost function can be approximated by solving
the generalized eigenvalue system for the normalized graph
Laplacian:

L = D− 1
2 (D −W )D− 1

2 (2)

where W is the N ×N matrix whose entries are the weights,
ω(i, j); and D is a diagonal matrix whose elements are the sum
of the rows of W . To bi-partition the graph, the eigenvector
that corresponds to the second smallest eigenvalue is used.
This approach has also been applied recursively to obtain more
than two partitions [4].

Ng et al. [5] extended this technique to the k-way partition-
ing case, however they used a slightly different notation. The
affinity matrix A is used instead of the similarity matrix W
and I−L (where I is the identity matrix) is replaced with the
normalized affinity matrix:

L = D− 1
2 A D− 1

2 (3)

Both techniques start by collecting local evidence on how
likely it is that two data points belong to the same partition.
This is achieved by forming a matrix whose entries represent
pairwise similarities defined appropriately. Later, a global de-
cision for partitioning is made based on the ncut cost function.
A continuous domain solution that is globally optimum is
obtained by the eigendecomposition of the pairwise similarity
matrix. The two techniques differ at the last step, where a
discrete solution is obtained from the eigenvectors. Shi and
Malik [4] used thresholding on a specific eigenvector, while
Ng et al. [5] performed K-means clustering in the new space
spanned by the eigenvectors that are associated with the first
few eigenvalues.

Yu and Shi [7] later showed that to obtain a discrete
solution, such heuristics are not needed, since the eigenvectors
completely characterize the structure of all optimal solutions.
The whole space of global optima can be navigated using
orthogonal transforms. The near-global optimal solution can
be obtained by iteratively solving for a discrete solution that is
closest to a continuous global optima using an alternating op-
timization procedure. The method that uses this discretization
step after obtaining the continuous solution is called multiclass
spectral clustering (MSC) [7].

A. Spectral Graph Partitioning Using Contour Information

The main approaches to image segmentation are based on
either regions or contours. Most region-based techniques per-
form sequential merging of segments based on an appropriate
measure, which is often statistical. For example, a likelihood
ratio test can be used to decide if two segments come from
the same population or not. Region-based segmentation can
also be performed by optimizing a global objective function,
however in general, contour information is not utilized. On the
other hand, contour-based techniques start with edge detection,
followed by a linking process; edges are used to define
segment boundaries. An important drawback is that only local
information is used for edge detection and decisions regarding

the segment boundaries are made prematurely. Leung and Ma-
lik [8] addressed this issue by computing contour information
locally, but making the decision only after the information
from the whole image is obtained. This approach allows the
utilization of contour cue in a region-based setting [8], [9].

Information about the strength of a contour can be obtained
through the orientation energy. Let F1(x, y) be the second
derivative of an elongated Gaussian kernel and F2(x, y) be its
Hilbert transform:

F1(x, y) =
d2

dy2

(
1
C

exp
{

y2

σ2

}
exp

{
x2

λ2 σ2

})
(4)

F2(x, y) = Hilbert {F1(x, y) } (5)

where C is a constant, σ and λ are the scale and elongation
of the filter, respectively. For example, the orientation energy at
angle 0◦ has maximum response only for horizontal contours:

OE0◦ = { I ∗ F1 }2 + { I ∗ F2 }2 (6)

Rotated copies of the two filter kernels (shown in Figure 1)
are able to pick up the edge contrast at different orientations.

Fig. 1. Second derivative of an elongated Gaussian kernel (4) (top row) and
its Hilbert transform (5) at different orientations (bottom row) [8].

At each pixel, the orientation energy, OE(x, y) is the
maximum value of orientation energies calculated at a number
of orientations, φ:

OE(x, y) = max
φ

OEφ(x, y) (7)

The orientation energy defined above has the following useful
properties: (i) The second derivative of the Gaussian and its
Hilbert transform form a quadrature pair. (ii) The filters are
elongated, so that information is integrated along the edge.
Thus, extended contours will stand out even if the contrast is
low, as opposed to short contours with high contrast.

Based on the contour information, the dissimilarity of two
pixels can be defined as the maximum value of the orientation
energy that is encountered along the line joining those two
pixels. Intuitively, if there is an extended contour (e.g., a field
boundary) crossing between the two pixels, those pixels should
belong to different partitions.

Fig. 2. Maximum value of orientation energy encountered along the line
drawn between two pixels is a measure of dissimilarity. Adopted from [8].



Figure 2 illustrates this concept where s1, s2 and s3 have
similar intensity values. Typically in region-based segmen-
tation, intensity is the only information source. Since these
pixels have almost same intensity values, their similarities
are high. However, there is an extended contour separating
s3 from s1 and s2. Thus, we expect s1 to be much more
strongly related to s2 than to s3. This intuition carries over
to the definition of similarity based on contour information:
If the maximum value of orientation energy on a line joining
two pixels is high – suggesting the presence of an extended
contour – the similarity of that pair should be low.

Formally, the dissimilarity of two pixels based on contour
information, dc(si, sj), is defined as:

dc(si, sj) = OE(x̂) (8)

x̂ = arg max
x∈l

OE(x) (9)

where l is the line joining si and sj ; and x̂ is the location
where the orientation energy is maximum along l. Based on
the contour information, the pairwise affinity is:

WC
ij = exp

{−d 2
c (si, sj)
2 σ 2

c

}
(10)

where σc is the scaling parameter for the kernel.

III. PROPOSED SCHEME FOR SEGMENTATION OF POLSAR
DATA USING CONTOUR INFORMATION

We propose the following scheme for segmenting Polari-
metric SAR data using contour information:

1) Perform multi-looking on the single look complex (SLC)
data set.

2) Form an affinity matrix for each of the channel powers
(i.e., |HH|2, |HV |2, |V V |2) using (10). Limit the
number of affinity calculations per pixel by choosing an
appropriate neighborhood size, representing proximity in
the image plane; outside this neighborhood the similarity
due to proximity will be “zero”.

3) Form the combined affinity matrix, W tot, using:

W tot
ij =

nd∏

d=1

W Cd
ij (11)

where the subscript d is the index for input data
channels, and nd is the number of data channels.

4) Perform the multiclass spectral clustering algorithm [7]
on W tot. The following steps are taken:

• Calculate diagonal matrix D, where Dii =
∑

j Wij

• Find a continuous solution that is global optimum
using eigendecomposition and normalization.

• Iteratively, solve for the discrete near-global opti-
mum that is closest to the continuous solution. This
is performed by alternating between the following
steps until convergence: (a) Find the continuous
optima closest to the discrete solution, (b) Find a
discrete solution closest to the continuous optima.

A. Implementation Details

To calculate the orientation energy at a specific angle (6), the
image is convolved with odd-symmetric and even-symmetric
filters that are obtained using the difference of offset Gaussian
(DOOG) kernel (For details see [10]). The parameters to select
are: filter size, number of orientations, elongation (λ) and scale
(σ) of the filter.

To compute the affinity matrix for each channel, we need
to select the scale of the kernel (σc). This choice can be made
adaptively based on the maximum value of OE in the image.
It is also required to choose the size of the neighborhood,
outside which the weights will be zero.

IV. RESULTS AND DISCUSSION

The results presented in this section are obtained using
subsets of the polarimetric SAR scene shown in Figure 3(a).
This C-band data set was acquired on 30 September 2004
by the Canadian Convair-580 aircraft. The scene covers the
agricultural fields on Westham Island, located to the south of
Vancouver. The area contains fields of corn, potatoes, variety
of berries, hay, bare soil, some barley, wheat, pumpkin, turnip,
red cabbage, broccoli, and grass. For our present purpose, we
use manual segmentation as a reference solution.

Two test regions outlined in Figure 3(a) are expanded in
Figures 3(b) and 3(e). Corresponding manual segmentations
are given in Figures 3(c) and 3(f). Wishart classifier results
that were obtained after speckle filtering [11] are shown in
Figures 3(d) and 3(g). Using the manual segmentations as
reference, Wishart classifier results are not as homogenous as
we would like them to be. Assuming each segment to belong
to a different class, classification accuracy is calculated based
on the manual segmentation. For Test Regions # 1 and # 2,
81.6% and 74.1% of the pixels are assigned correctly.

Figures 4 and 5 present some results obtained with our new
approach. Three polarimetric channel powers (i.e., |HH|2,
|HV |2, |V V |2), RGB color composite formed using these
channels, their corresponding orientation energy maps, and
manual segmentations are also shown.

# 1
# 2

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3. Westham Island scene acquired by the Convair-580 c© CSA 2004.
(a) RGB color composite [HH-HV-VV] (b,e) RGB color composite - Test
Regions # 1 and # 2 (c,f) Manual segmentations (d,g) Wishart classifier result



|HH|2 |HV|2 |VV|2 RGB color composite Manual Segmentation

OE on |HH|2 OE on |HV|2 OE on |VV|2 OE overall MSC Result

Fig. 4. Westham Island - Test Region # 1 - Segmentation result of the
proposed scheme based on MSC. (λ2 = 9, number of orientations = 4)

In Test Region # 1, Figure 4, there are 6 different fields.
The result of the proposed scheme (MSC) is very similar to
our reference obtained by manual segmentation. On the other
hand, Test Region # 2, Figure 5, has 8 fields and the “MSC
Result” in this case is not as accurate in finding the field
boundaries, but still agrees with the reference segmentation
in general. It is also more homogeneous than the Wishart
result. Assuming each segment to represent a different class,
the classification accuracies in terms of pixel count can be
calculated for the two test regions as 94.3% and 94.7%.
These two examples demonstrate that the proposed scheme
can obtain good segmentation results, both qualitatively (i.e.,
visual comparison) and quantitatively.

Results presented in Figures 4 and 5 were obtained using:
Filter size = 21, λ2 = 9, number of orientations = 4 and
σ2 = 1. To assess the effects of elongation and number
of orientations, different values given in Table I were used.
Although these parameters affect the orientation energy maps,
they all seem to provide a similar level of accuracy.

These results were obtained using the contour information
extracted from the three polarimetric channel powers. How-
ever, spectral graph partitioning allows us to include additional
cues, such as patch-based similarity which was earlier shown
to be promising [6]. Future work involves combining patch-
based similarity and contour cues, performing detailed analysis
using multiple data sets.

|HH|2 |HV|2 |VV|2
RGB color 
composite

Manual 
Segmentation

OE on |HH|2 OE on |HV|2 OE on |VV|2 OE overall MSC Result

Fig. 5. Westham Island - Test Region # 2 (λ2 = 9, # of orientations = 4)

TABLE I
OVERALL CLASSIFICATION ACCURACY USING THE PROPOSED SCHEME

# of orientations 4 6
Elongation (λ2) 5 9 5 9
Test Region # 1 94.3 94.3 94.2 89.6
Test Region # 2 95.2 94.7 94.5 94.4

V. CONCLUSION

A new method for polarimetric SAR data segmentation
is proposed, based on spectral graph partitioning. Contour
information is utilized by defining the pairwise similarities
using the orientation energy. Multiclass spectral clustering is
used to obtain a discrete solution that is close to the global
optimum of our objective function (i.e., normalized cut). Pre-
liminary results are obtained using C-band data acquired by an
airborne system. The proposed method provides perceptually
plausible segmentations – the results closely agree with the
manual segmentations and they are more homogenous than
those obtained using the Wishart classifier.
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