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Abstract—A straightforward signal-to-noise ratio (SNR) 
estimator for elastic/Raman lidar channels and related 
noise-induced errorbars is presented. The estimator is 
based on piece-wise estimation of the mean signal power 
and noise variance component under analog detection. The 
piece-wise estimator results are compared with those 
obtained from a previously published SNR parametric 
estimator under high and low SNR scenarios. 
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I.  INTRODUCTION 
SNR estimation is the determining input to assess inversion 

algorithm errorbars and to inter-compare system and algorithm 
performances [1], all of which puts research of robust SNR 
estimators as a priority. 

Observation noise corrupting measured elastic/Raman 
signals at the receiver output can be of different statistical 
origins, namely, shot photo-induced, shot dark-current, and 
thermal ([2], Ap. A and [3], Ap. A). Under analog detection 
[4], the count-rates are high enough to assume that discrete 
Poisson statistics can be approximated by continuous Gaussian 
ones [5]. This enables to model the observation noise as range-
dependent equivalent Gaussian noise. 

To estimate the SNR, both the signal power and the noise 
standard deviation (equivalently, the noise variance) must be 
estimated. While a power estimate is usually derived by low-
pass filtering the range-corrected observable return, derivation 
of the range-dependent noise variance is more involved. Here, 
we propose to estimate it along successive adjacent range 
intervals of the lidar return. This is called the piece-wise 
approach. 

Yet, this is not the unique way to estimate the range-
dependent SNR. Thus, to qualitatively assess the estimator 
performance, the piece-wise SNR estimator is compared with a 
previously published one based on parametric estimation [3]. 

This paper is organised as follows: Sect. II reviews SNR 
fundamentals and formulates the piece-wise estimator and 
related errorbars, Sect. III compares the proposed estimator 
with the parametric one and outlines the mains pros and cons 

along different noise-dominated elastic lidar channel examples. 
Conclusion remarks are given in Sect. IV. 

II. SIGNAL-TO-NOISE (SNR) ESTIMATION 

A. SNR fundamentals 
We depart from the superposition principle by defining the 

background-subtracted lidar observable as 

 ][)()()( WRnRPRz += , (1) 

where  )(RP  is the “ideal” (i.e., noiseless) lidar power return or 
signal component, and )(Rn  is the equivalent zero-mean 
Gaussian noise component (see Sect. I) referred to the receiver 
input. At his point, it is important to empathise that total noise 
appearing at the receiver voltage output can be referred to the 
optical power input by downscaling it by the system net 
responsivity, vR′  [V/W]. 

From (1) the SNR is defined as 

 ( )
[ ]
[ ]W
W

R
RPRSNRp σ

= )()( , (2) 

where subindex “p” is a reminder of “referred to the system 
power input” and ( )Rσ  is the equivalent noise standard 
deviation (std. dev., for short) associated to ( )Rn . 

Following [3], the equivalent noise std. dev. can be 
expressed as 

 ( ) ( )[ ] ][21 WbRPaR eqeq +=σ , (3) 

where [ ]Waeq  and [ ]2Wbeq  are constitutive parameters of the 
lidar receiving channel (see (6) and Appendix A in [3] for 
exhaustive formulation). Thus, the term ( ) [ ]2WRPaeq  
represents the shot photo-induced noise contribution modelling 
the inherent statistical fluctuations associated to the Poisson 
nature of the lidar signal received photons. The term [ ]2Wbeq  
merges into a single body shot photo-induced noise from the 
background component (e.g. solar radiation), shot dark-current 
induced noise (Poisson statistics), and thermal noise 
contributions (Gaussian statistics). 



B. SNR Piece-wise estimation 
The piece-wise estimation procedure is based on 

partitioning the measurement range into adjacent intervals, jI , 
of appropriate length in order to estimate both the power signal 
component, )(RP , and the noise std. dev., ( )Rσ , (equivalently, 
the noise variance) at each successive interval. Formally, 
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where the symbols  and ^ mean “estimated”, jcR ,  is the 
range corresponding to the “central” sample of interval jI , and 

jµ̂  and jσ̂  are the central-sample power and noise std. dev. 
estimates, respectively. In this work, only uniform length 
intervals of an odd number of samples ( ji IR ∈ ), N, are 
considered. At each interval jI , the estimator is to combine N 
samples of the lidar observable, ( )Rz , to come up with a pair of 
estimates jµ̂  and jσ̂ , namely, the mean and std. dev. of ( )Rz , 
respectively. 

When the estimated SNR in (4) is compared with its true 
value, 
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the estimation error is computed as the relative error in 
interval jI , jr ,ε , defined as 
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where
jµσ ˆ and

jsσ are respectively the estimation errors 
associated to the signal component estimate, jµ̂ , and to the 
noise std. dev. estimate, jσ̂ . Estimation of these quantities is 

discussed next (Sects. II.C-D). In turn, the ratios jj
µσ µ ˆˆ and 

js j
σσ ˆ respectively express the relative estimation errors 

associated to jµ̂ and jσ̂ . 

C. Signal component estimation 
The estimation is performed in two steps: First, the mean 

component, ( )Rµ̂ , is derived by low-pass filtering (equivalently, 
by range smoothing) the observable lidar return, ( )Rz , with a 
window length equal to the interval length, N. This ensures that 
all available samples from jI  are used to estimate the central 
one. In fact, filtering the range-corrected observable with just a 
rectangular filter and correcting by 2R  afterwards is the 
preferred method to reduce distortion. Second, the central-
sample signal component estimate is retained so that 
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When a rectangular window is used, which represents 
estimating the mean of the samples in jI , the error std. dev. of 

jµ̂  estimate is given by [6] 
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To compute the unknown jσ , we use its estimate, jj σσ ˆ≈ , 
instead. This is discussed next. 

D. Noise variance estimation 
To piece-wise estimate the noise variance at each interval 

jI , an estimate of the observation noise, ( )Rn  in (1), is first 
computed as 

 )(ˆ)()(ˆ RRzRn µ−= . (9) 

Note that this is equivalent to high-pass filtering the lidar 
observable ( )Rz , )()(ˆ RZRn HP= . 

The central-sample noise std. dev. is directly computed 
from the unbiased variance of ( )Rn̂  as 
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where the term 
N11

1
−

 is a (rectangular window) correction 

factor that takes into account the fact that the noise variance is 
computed at the high pass filter output, when in fact, it must be 
estimated at its input [7]. 

The estimation error associated to (10) (unbiased std. dev. 
estimation of a sample of N data values) is given by [6]  
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III. DISCUSSION 

A. Case example and limitations 
Figs. 1-2 illustrate operation of the SNR piece-wise 

estimator and the impact different choices of the (rectangular) 
low-pass filter window length (Sect. II.C), N, have on the final 
SNR estimate. 

Two different spatial resolutions have been considered: A 
“high resolution” case, with N=7 samples, and a “low 
resolution” case, with variable N (21 samples from 0.37 km 
(Rmin) up to 1.90 km, 41 samples up to 6.31 km, and 71 samples 
up to 9.01 km (Rmax)). In both cases, the raw resolution is 7.5 
m, which translates into resolutions of 150 m and [150 300 
525] m, respectively. The “interval no.” notation corresponds 
to the following “central-sample” ranges:  

)1( 1,1 kmRI c = , )3( 2,2 kmRI c = , )5( 3,3 kmRI c = , )7( 4,4 kmRI c = ,and 
)5.8( 5,5 kmRI c = . 

As seen from Fig. 2 and Fig. 1b, jµ̂  is the least sensitive 
estimate to the chosen resolution (Fig. 2a) while this is not the 
case for jσ̂  and SNR estimates (intervals 1I - 3I  in Fig. 2b). 



This is because in the “low resolution” case, the final value of 
the noise std. dev., jσ̂ , is erroneously increased by unwanted 
leakage of the signal component at the high-pass filter output. 
This leakage is evidenced by noise spikes in Fig. 2c (intervals 

1I - 3I ) and Fig. 2d (interval 1I  only) and corresponds to fast 
signal transients of the lidar signal (Fig. 1a) at the end of the 
boundary layer (R≈1.5 km) and aerosol layers (3-4 km and 5-
5.5 km ranges). 

Resolution-induced errors are linked to the shape of the 
signal rather and hence cannot be estimated from the noise-
induced errorbars of (8),(11). They can only be minimised by 
decreasing the interval length, N, which imposes a trade-off 
with the general requirement of low noise-induced SNR 
errorbars ((6), (8) (11)), for they decrease by increasing N. 

B. Comparison with parametric estimation 
The parametric estimation approach [3] uses the noise 

model of (3) and a noise realization estimate, ( )Rn̂  (9), to find 
the best system noise parameters, ( )eqeqeq bav ,=  -the so-called 
noise state vector-, under a minimum least-squared error 
criterion, 
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where ( )Rw  is the weighting function and the rest of variables 
have already been defined in (3) and (9) above. An initial guess 
of eqv  is required to solve (12). 

The second simulation example considers a 532-nm elastic 
lidar signal synthesized by means of a homogeneous aerosol 
extinction of 11.0 −= kmaerα  and a constant lidar ratio of 25 sr in 
the mixing layer (0.2-3 km), and a US-standard atmosphere 
(T=-2°C, P=1025 hPa) to model molecular components. Two 
cases are considered to compare the piece-wise and the 
parametric SNR estimator: Case 1 “low SNR” corresponding to 
a SNR in the 102-1 range (Figs.3, 5, 6a), and case 2 “high 
SNR”, SNR in the 104-102 range (Figs.4, 6b). See [3] for 
details of similar Figs. 3-4. 

From Fig. 6, it is seen both estimators perform best under 
low SNRs (case 1). Thus, for high SNRs, the piece-wise 
estimator is more sensitive to fast transients of the lidar signal 
(boundary layer discontinuity at R=3km) causing resolution 
errors to prevail while the parametric estimator fails to estimate 
the eqb  noise-state component (12), usually under shot photo-
induced noise-limited situations (this is evidenced by an error 
estimation offset in the 3-4 km range of Fig. 6b). The fact that 
both estimators use an estimate of the observable noise, ( )Rn̂  in 
(9), as the primary quantity from which either the variance (10) 
or the noise state-vector is derived (12) justifies this similar 
behaviour. 

Finally, a main drawback of parametric estimator is the 
need for a relatively accurate convergent initial guess. 

IV. CONCLUSIONS AND FUTURE WORK 
A piece SNR estimator for elastic/Raman lidar channels has 

been formulated along with noise-induced errorbars. A trade-
off arises between the selected spatial resolution and the noise-
induced estimation error for the range-dependent variance 
estimate is very sensitive to resolution errors caused by fast 
transients of the signal. Selection of the optimal interval length 
is still a matter of research but even fixed resolutions of 
hundreds of meters enable practical estimations for 
tropospheric systems. 
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Figure 1. (a) Range-corrected 532-nm elastic return, (red/blue) high/low 

spatial resolution mean estimate, (7). (b) SNR estimate, (black) true SNR, 
(red/blue) related high/low-resolution SNR estimates, (6). 

Figure 2. Resolution-induced errors. (a) Range-corrected mean, (7), and (b) 
std. dev. estimates, (10) (high/low resolution in red/blue trace). (c)(d) High-

pass noise estimates (9) using low/high resolution, respectively. 

  
Figure 3. 532-nm elastic lidar return and SNR parametric estimation (case 1, 
SNR(Rmin)=102). (a) Range-corrected noisy observable, (b) weighted filtered 

noise, (c) weight function, (d)  SNR estimate (red) vs. true SNR (green). 

Figure 4. Same as Fig. 1 for case 2, SNR(Rmin)=104. 

  
Figure 5. (Case 1) Noise standard deviation (std. dev.) piece-wise estimation. 

(blue) SNR estimate, (magenta) errorbars, (dotted grey) true std. dev. 
Figure 6. Comparison between the piece-wise (solid blue) and the parametric 

(red) SNR estimators. True SNR (black). (a) case 1, (b) case 2. 
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