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Abstract— Many available techniques for spectral mixture
analysis involve the separation of mixed pixel spectra collected
by imaging spectrometers into pure component (endmember)
spectra, and the estimation of abundance values for each end-
member. Although linear mixing models generally provide a good
abstraction of the mixing process, several naturally occurring
situations exist where nonlinear models may provide the most
accurate assessment of endmember abundance. In this paper,
we propose a combined linear/nonlinear mixture model which
makes use of linear mixture analysis to provide an initial model
estimation, which is then thoroughly refined using a multi-layer
neural network coupled with intelligent algorithms for automatic
selection of training samples. Three different algorithms for
automatic selection of training samples, such as border train-
ing algorithm (BTA), mixed signature algorithm (MSA) and
mophological erosion algorithm (MEA) are developed for this
purpose. The proposed model is evaluated in the context of a
real application which involves the use of hyperspectral data
sets, collected by the Digital Airborne (DAIS 7915) and Reflective
Optics System (ROSIS) imaging spectrometers of DLR, operating
simultaneously at multiple spatial resolutions.

I. INTRODUCTION

Most of the pixels collected by hyperspectral imagers con-
tain the resultant mixed spectra from the reflected surface
radiation of various subpixel constituent materials. As a result,
mixed pixels may exist for several reasons. First, if the spatial
resolution of the sensor is not fine enough to separate different
pure signature classes at a macroscopic level, these can jointly
occupy a single pixel, and the resulting spectral measurement
will be a composite of the individual pure spectra [1] (often
called endmembers in hyperspectral analysis terminology),
weighted by a set of scalar endmember abundance fractions.

The linear mixture model assumes that the collected spectra
are linearly mixed [2]. For instance, a linear (macroscopic)
mixture is obtained when the endmember substances are
sitting side-by-side within the field of view of the imager (the
linear model assumes minimal secondary reflections and/or
multiple scattering effects in the data collection procedure).
The resultant mixed spectrum can be expressed as follows:

r = Eα + n =
p∑

i=1

eiαi + n, (1)

where r is a pixel vector given by a collection of values at
different wavelengths, E = {ei}p

i=1 is a matrix containing p
endmember signatures, α is a vector containing the fractional

abundance values for each of the p endmembers in r, and n
is a noise vector.

Although the linear mixture model has several advantages,
such as ease of implementation and flexibility in different
applications, there are many naturally occuring situations
where nonlinear mixture models may best describe the resul-
tant mixed spectra for certain endmember distributions [3].
In particular, nonlinear mixtures occur in situations where
endmember components are randomly distributed throughout
the field of view of the instrument [2]. In those cases, the
resultant mixed spectra is better described by assuming that
part of the source radiation is multiply scattered before being
collected by the imager. A general expression for the nonlinear
mixture model is given by:

r = f(E, α) + n, (2)

where f is an unknown nonlinear function that defines the
interaction between E and α. Various learning-from-data
techniques have been proposed in the literature to estimate
f . In particular, neural networks have demonstrated great
potential to decompose mixed pixels due to their inherent
capacity to approximate complex functions [4]. Although
many neural network architectures exist, for decomposition of
mixed pixels in terms of nonlinear relationships mostly feed-
forward networks of various layers, such as the multi-layer
perceptron (MLP), have been used [5]. It has been shown
in the literature that MLP-based neural models, when trained
accordingly, generally outperform other nonlinear models such
as regression trees or fuzzy classifiers.

In this paper, we explore in detail the two standard mixture
models for abundance estimation in hyperspectral imagery and
further propose a combined linear/nonlinear model that results
from the advantages and disadvantages of each one. The paper
is structured as follows. Section II identifies some important
aspects of neural network-based spectral mixture analysis.
Section III describes the combined linear/nonlinear model.
Section IV conducts real data experiments using hyperspectral
data sets collected by the DAIS 7915 and the ROSIS imaging
spectrometers, operating at multiple resolutions in the context
of a real agriculture and farming application. Finally, Section
V summarizes the main contributions of this work.



II. ISSUES FOR MIXED PIXEL INTERPRETATION USING

ARTIFICIAL NEURAL NETWORKS

A variety of issues have been investigated in order to eval-
uate the impact of training and initialization on mixed pixel
interpretation using artificial neural networks. Two aspects will
be particularly addressed in this work:

1) Training issues. Most of the attention when analyzing
the impact of training on the interpretation of mixed
pixels has been focused on the size of the training
set. However, even if the endmembers participating in
mixtures in a certain area are known, proportions of
these endmembers on a per-pixel basis are difficult to be
estimated a priori. Therefore, a challenging aspect in the
design of neural network-based techniques for spectral
mixture analysis is to reduce the need for very large
training sets.

2) Initialization issues. A second important issue has to
do with initial model conditions. For instance, the MLP
neural network is typically trained using the error back-
propagation algorithm, a supervised technique of train-
ing with three phases. In the first one, an initial vector is
presented to the network, which leads to the activation
of the network as a whole. The second phase computes
an error between the output vector and a vector of
desired values for each output unit, and propagates it
successively back through the network. The last phase
computes the changes for the connection weights, which
are randomly generated in the beginning. According to
algorithm design, an effective learning algorithm should
not depend on initial conditions, which can only affect
the convergence rate but should not alter the final results.
Often, this is not the case of learning algorithms used
for neural networks. In order for a mixture model to be
effective, initial values must be representative and cannot
be arbitrary.

In this work, we explore and further propose solutions to
resolve the issues addressed above. To address the first issue,
we develop intelligent training sample selection algorithms
which can greatly minimize the number of required training
samples. To address the second issue, we develop a joint
linear/nonlinear mixture model in which linear estimations are
used as the initial condition for a nonlinear neural network-
based mixture model.

III. COMBINED LINEAR/NONLINEAR MIXTURE MODEL

In this section, we describe a combined linear/nonlinear
model which consists of the following main steps:

1) Initialization via a fully constrained linear mixture
model based on automatic endmember extraction; and

2) nonlinear refinement using a MLP neural network. This
step is supported by a pool of unsupervised algorithms
for intelligent selection of training samples.

Fig. 1 shows a schematic block diagram of the proposed
method, which will be further developed in this section.

A. Initialization Using a Linear Mixture Model

Linear SMA assumes that the pure (endmember) signatures
of materials in the image scene are known. Therefore, estima-
tion of the number of endmembers, p, is a key issue. Here, we
use the concept of virtual dimensionality (VD) can be used to
accurately estimate the number of endmembers in the scene
[6]. Once the number of endmembers is estimated, we use
the automated morphological endmember extraction (AMEE)
algorithm [7], one of the few available endmember extraction
algorithms which combine spatial and spectral information, to
extract a set of p spectral endmembers from the input data.
Once a final set of endmembers {ei}P

i=1 has been found, we
use fully constrained linear spectral unmixing (FCLSU) [6] to
produce a vector of abundance fractions α(r) = {α(r)

i }p
i=1 for

each pixel vector r, subject to αi ≥ 0 for all 1 ≤ i ≤ p, and∑p
i=1 α

(r)
i = 1. The fully constrained linear estimation above

is used in this work as an initial condition for a subsequent
nonlinear refinement stage, which is described below.

B. Nonlinear Refinement Using a Multi-layer Neural Network

The neural architecture used for nonlinear refinement is
composed of three layers [8]. The neuron count at the input
and output layers, p, equals the number of spectral constituents
found by the AMEE algorithm in the initialization stage. The
input patterns to the input layer are vectors of endmember
fractional abundances α(r) = {α(r)

i }p
i=1 for each sample vector

r, first estimated by FCLSU. The number of neurons in the
hidden layer has been empirically set to twice the number
of endmembers found in the initialization stage. Information
flows from the input layer to the hidden layer, and then to the
output layer via a set of network connections. Each connection
multiplies the value coming from its origin node by the weight
assigned to that arc and sends the result to the destination
node, which adds the values presented to it by all the incoming
connection, transforms it with a nonlinear activation function
(the sigmoid function in this work [9]), and then sends the
result along all of its outgoing connections.

If we denote by α(tl) = {α(tl)
i }t

l=1 the vector of fractional
abundances estimated by linear mixture model for the l-
th training sample tl used in the backpropagation algorithm
(where t is the total number of training patterns), and by
α̂(tl) = {α̂(tl)

i }t
l=1 a known vector of contributions (ground-

truth) for that training pattern, then the backpropagation al-
gorithm computes the difference between the true function
value and the prediction and propagates it successively back
through the network so that the matrix of connection weights
W is adjusted until the network approximates the desired
output closely enough. A measure of how much the network
is deviating from the desired performance can be expressed in
terms of the root mean square error (RMSE) as follows:

RMSE(W) =

√√√√(1/t)
t∑

l=1

p∑
i=1

(α(tl)
i − α̂

(tl)
i )2 (3)



Fig. 1. Block diagram of the proposed linear/nonlinear method for spectral mixture analysis.

C. Algorithms for Intelligent Selection of Training Samples

To conclude this section, we outline several automatic
algorithms which have been specifically developed to auto-
matically search for the most representative training samples
from the data set according to different criteria, such as the
borderness (convexity) of those samples or the degree of
spectral similarity to other spatially adjacent training samples.

1) Border-Training Sample Selection Algorithm (BTA): The
separation of a training set into border and non-border patterns
in the context of a pure pixel classification problem was first
explored by Foody [10], who expressed borderness as the
difference between the two smallest distances measured for
each training pattern. A border-training pattern is expected to
be almost as close to its actual class of membership as it is to
any other class. Therefore, the difference in the Mahalanobis
distances between the two most likely classes of membership
would be small for a border pattern. Using this concept, we
have developed a border-training sample selection algorithm
(BTA) which consists of a two-stage process, in which a set of
pure training samples are first automatically extracted from the
input data (using the AMEE algorithm), and then a degree of
borderness related to those samples is used to identify highly
mixed training samples.

2) Mixed-Signature Selection Algorithm (MSA): As an al-
ternative to the BTA algorithm, we have developed a mixed-
signature selection algorithm (MSA) that iteratively seeks for
the most highly mixed training samples first. This is done by
first calculating the centroid of the data cloud and then com-
puting an eccentricity score for each pixel in the input scene
using the spectral angle as the baseline distance. The pixels
with lowest eccentricity score are the most suitable candidates
for being selected by MSA to be used as training samples.
It should be noted that the algorithm above is designed to
search for the most highly mixed signatures first. The concept
implemented by this algorithm can be viewed as the opposite
to that used by convex geometry-based endmember extraction
methods.

3) Morphological erosion algorithm (MEA): This algo-
rithm makes use of an extended morphological erosion op-

eration [7], which can be very useful for the interpretation of
mixed pixels since it takes into account both the spatial and the
spectral properties of the image data in simultaneous fashion.
The idea is to define a spatial search area around each pixel
vector, typically, a 5 × 5 to 15 × 15-pixel neighborhood, and
then compute the spectral angle between the pixel and the most
highly mixed pixel in the neighborhood. The resulting scores
are accumulated and used as a measure of the eccentricity
of the pixel (as in the case of MSA, the pixels with lowest
eccentricity score are the most suitable candidates for being
selected by MEA to be used as training samples).

IV. EXPERIMENTAL RESULTS

The data used in this study was collected over a so-called
Dehesa test site in Cáceres, SW Spain. Dehesa ecosystems are
formed by quercus ilex (cork-oak trees), soil and pasture. Their
exploitation has an important impact on the economies of
several European countries (most notably, Spain and Portugal).
The image data is formed by a ROSIS scene collected at high
spatial resolution, with 1.2-meter pixels, and its corresponding
DAIS 7915 scene, collected at low spatial resolution with 6-
meter pixels. Several field techniques were applied to obtain
reliable estimates of the true fractional land cover for each
DAIS pixel in the considered Dehesa test site. First, the
ROSIS image was roughly classified into the three land-cover
components above using a maximum-likelihood supervised
classification approach based on image-derived spectral end-
members. Second, the classified ROSIS image was registered
with the DAIS image using an automated ground control point-
based method with sub-pixel accuracy. Most importantly, the
abundance maps at the ROSIS level described above were
thoroughly refined using field data before obtaining the final
reference proportions.

Fig. 2(a-c) shows the training areas extracted from the
DAIS scene by the three developed training sample selection
algorithms (BTA, MSA and MEA, respectively). In order
to assess the performance of the considered mixed sample
selection algorithm, two unsupervised algorithms were also
used in experiments. The first one [see Fig. 2(d)] is an
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Fig. 2. Training samples extracted by five different training sample selection algorithms from the DAIS 7915 hyperspectral scene.

TABLE I

RMSE SCORES IN FRACTIONAL ABUNDANCE ESTIMATION OF PASTURE

IN THE DAIS 7915 DATA USING A LINEAR/NONLINEAR MIXTURE

MODEL TRAINED BY DIFFERENT AUTOMATED ALGORITHMS.

# Training samples BTA MSA MEA OSP Maximin
1 0.146 0.116 0.125 0.147 0.150
2 0.121 0.087 0.096 0.143 0.143
3 0.093 0.040 0.046 0.140 0.142
4 0.093 0.039 0.044 0.136 0.139
5 0.093 0.040 0.043 0.131 0.137
6 0.090 0.041 0.044 0.124 0.127

automated target generation process based on an orthogonal
subspace projection (OSP) approach [6]. The second one
[see Fig. 2(e)] is the Maximin algorithm commonly used in
pattern recognition applications [9]. In all cases, the number
of training samples was limited to six on purpose.

Table I quantitatively compares the performance of the
proposed linear/nonlinear model trained with different algo-
rithms and number of training samples, where the number
of endmembers in the considered DAIS scene was estimated
to p = 10. Specifically, the table reports the RMSE scores
in fractional abundance estimation (with regards to measured
ground-truth) of pasture. The RMSE score produced by the
linear mixture model for this constituent was 0.153.

From results in Table I, it is clear that using only three
training samples generated by the BSA, MSA and MEA ero-
sion algorithms always introduced a significant improvement
in abundance estimation with regards to the cases where less
training samples were considered. It was also apparent that
using additional samples selected by these three algorithms did
not significantly improve the quality of abundance estimation.
Quite opposite, we observed that the OSP and Maximin algo-
rithms produced rather unstable results, with only moderately
acceptable scores when all six training samples were used.
These results illustrate the advantages of intelligent initializa-
tion and training for the proposed linear/nonlinear model. In
particular, intelligent generation of training samples appears
to play a very significant role, thus showing the potential to
direct training data collection to target the most useful sites.

V. SUMMARY

Linear mixture models and artificial neural networks can
be viewed as two ends of a spectrum of mixture models in
remote sensing. On the one hand, linear models are simple
to implement and can provide a rough estimation of the
abundance of endmember classes, but generally result in poor
accuracy when more complex mixtures are involved, mainly
because those models cannot capture the variation in the data
well. On the other hand, neural network models are highly
nonlinear, and hence are able to capture complex structure in
the data better. Their use is gaining popularity, but the lack
of commonly accepted initialization and, particularly, training
procedures represents a major obstacle. In this paper, we have
developed a first attempt to bridge the gap between the two
models, with the purpose of exploiting their main advantages
in combined fashion.
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