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ABSTRACT

We propose an active learning algorithm with knowledge
transfer for classification of hyperspectral remote sensing
data. The proposed method is based on a previously proposed
algorithm, but yields faster learning curves by adjusting dis-
tributions of labeled data differently for the old and the new
data. With the proposed method, the classifier can effectively
transfer its knowledge learned from one region to a spatially
or temporally separated region whose spectral signature is
different. Empirical evaluation of the proposed algorithm is
performed for two different hyperspectal datasets.

Index Terms— classification, hyperspectral data, active
learning, knowledge transfer

1. INTRODUCTION

Training a classifier for characterizing land cover based on hy-
perpectral imagery usually requires large amounts of labeled
data. Obtaining ground truth class labels of a remote sensing
image is expensive. Moreover, there are temporal and spa-
tial variations in the spectral signatures due to many reasons
such as seasonal effects, ecological or topographical varia-
tions, weather conditions, and geological differences. Since
it is impractical to obtain ground truth of all areas at multiple
times, we need “transfer learning” techniques that can achieve
high classification accuracy with relatively small number of
labeled samples from a new area by exploiting previously pro-
cessed information [1].

Active learning is a method of online learning, where a
learner strategically selects new training examples that pro-
vide maximal information about the unlabeled dataset, result-
ing in higher classification accuracy for a given training set
size as compared to using randomly selected examples. Ac-
tive learning is most useful when there are sufficient number
of unlabeled samples but it is expensive to obtain class la-
bels. Most active learning algorithms however assume that
the model built upon labeled data is not biased, and the prob-
ability distribution of the unlabeled and existing datasets are
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identical. These assumptions do not hold for remote sensing
applications under spatial and temporal variations; hence we
need to incorporate transfer learning techniques into an active
learner. Rajan et al. [1] recently proposed KL-max algorithm
to transfer knowledge with active learning for hyperspectral
data, setting the current state of the art. In this paper, we
build on Rajan et al.’s approach for more effective knowledge
transfer using active learning.

2. ACTIVE LEARNING

Having enough number of labeled examples is important to
obtain a good classifier, especially for difficult problems. In
many cases, however, acquiring ground truth for large num-
ber of examples is an expensive and time-consuming task. On
the contrary, unlabeled samples are easier to obtain for some
problems. For example, classification of web pages belongs
in the category. A simple web crawling robot can automat-
ically collect huge amount of web pages, or unlabeled sam-
ples, without much difficulty or cost involved. Labeling all of
the collected web pages, however, requires a lot of effort, and
it is virtually impossible for a single human expert. For land
cover classification based on remotely sensed data, a similar
situation is encountered. Airborne or satellite images usually
cover large geographical areas, while finding the actual land
cover type is costly and involves efforts of human experts.

In the active learning literature, conventional learning al-
gorithms without active selection is often referred as ‘passive
learning’ in contrast to active learning algorithms. In pas-
sive learning, a training set is usually selected randomly from
the entire data. In active learning, a learner chooses k exam-
ples those are considered most useful, obtains ground truth
for them, learns from these k examples, and then repeats the
choose-and-learn process. Query-by-committee (QBC) [2] is
a well-known active learning algorithm that employs a com-
mittee of independent classifiers, and it is shown that the algo-
rithm guarantees positive information gain for each query un-
der several assumptions, while the information gain from ran-
domly selected examples converges to zero asymptotically.
MacKay [3] proposed an active learning framework, where



the learner chooses an example which has the most expected
informational gain. Lewis and Gale [4] proposed a sampling
criteria for the active learning, called uncertainty sampling,
and various kinds of uncertainty measures can be used de-
pending on the problem domain. Cohn et al [5] proposed
a method based on a statistical analysis of the active learn-
ing problem, where the point that minimizes the variance of a
model is selected to be labeled. In general, most active learn-
ing algorithms aim to achieve lower error rate than passive
learning with same or fewer number of labeled samples.

3. KL-MAX

Classification of land cover types with remotely sensed hy-
perspectral imagery mostly depends on the spectral signature
of each land cover type, which has temporal and spatial vari-
ations as discussed in section 1. It is not practical to build
a new classifier whenever temporal or spatial change occurs,
because training a new classifier requires large amounts of la-
beled data, even with active learning. A positive aspect of
the problem is that spectral signatures of a new region are not
completely different from those of the old region when spatial
or temporal difference is small. If we could effectively reuse
our knowledge derived from previous data, then a classifier
for the new area can be trained with significantly less number
of samples. Applying a previously trained classifier directly
to the new region, however, often results in poor classifica-
tion accuracies and it also degrades performances of active
learning algorithms. Most active learning algorithms require
an initial model, and it is assumed that the initial model is
built upon a distribution identical to that of unlabeled data.
For example, Cohn et al’s approach requires that the model is
not biased [5], and MacKay’s approach is also based on the
correctness of the initial model [3]. For this reason, we need
to adapt our model for the new region while maintaining its
useful knowledge by employing transfer learning techniques.

In our setup, it is assumed that there exist two different
datasets from temporally or spatially distant regions, that we
refer to as areas 1 and 2 respectively. We denote our set of
labeled samples from area 1 as DL, and we have a model
trained on DL, which is used as an initial model in the sub-
sequent active learning process to select a sample from DUL,
a set of unlabeled data from area 2. The difficulty of this ap-
proach arises when the probabilistic distribution of DL is dif-
ferent from that of DUL. If our model built upon the labeled
set does not provide unbiased results on the new set, then we
cannot expect samples selected from the new set using tra-
ditional active learning to be the most informative samples,
which results in a slower learning curve. If we could build a
better model by using DL and DUL together, then we could
choose more informative samples. Having more informative
samples leads the model to be more accurate on DUL, con-
sequently enabling better choice of unlabeled samples again,
and it forms a positive feedback for a faster learning curve. In

this manner, the KL-max algorithm [1] effectively combines
the active learning strategy with transfer learning.

The KL-max algorithm transfers knowledge in a semi-
supervised manner. The class-conditional distribution of DL

is assumed to be multi-variate Gaussian, and is estimated by
maximum likelihood (ML). The estimated distribution is then
used to initialize expectation-maximization (EM) process on
the unlabeled data to obtain a posterior probability distribu-
tion of the unlabeled dataset, PDL

(y|x). The active learning
algorithm used in KL-max is based on MacKay’s approach
[3], and it selects a data point (x̂, ŷ) that maximizes the infor-
mation gain on the posterior probability distribution. The in-
formation gain between two posterior distributions PD∗

L
(y|x)

and PDL
(y|x) can be measured by the Kullback-Liebler (KL)

divergence between PDL
∗(y|x) and PDL

(y|x). Because we
do not the true label ŷ for x̂, the expected KL divergence is
calculated over all possible class labels ỹ ∈ Y .

x̂ = argmax
x̂∈DUL

∑
ỹ∈Y

KLmax
D∗

L
(x̃, ỹ)PDL

(ỹ|x̃)

Defining DUL∗ = DUL \ x∗ and DL
∗ = DL ∪ (x̃, ỹ), the

KLmax can be written in terms of (x̃, ỹ) as:

KLmax
DL

∗(x̃, ỹ) =
1

D∗
UL

∑
x∈D∗

UL

KL(P ∗
DL

(y|x)||PDL
(y|x))

After obtaining the new data point (x̂, ŷ), the ML-EM
process is repeated with the augmented labeled dataset, fol-
lowed by constrained EM iterations. KL-max algorithm
shows faster learning rates than several other active learning
algorithms for hyperspectral data [1].

4. PROPOSED METHODOLOGY

The performance of the KL-max algorithm can be greatly im-
proved if we provide more accurate initial distribution for the
EM process in the ML-EM framework. In the KL-max algo-
rithm, all samples from area 1 and new samples from area 2
are treated equally for ML estimation, although their distri-
butions could be significantly different from each other. As a
result, the estimated distribution is much closer to the distri-
bution of area 1, since we have only a small fraction of sam-
ples from area 2 compared to the number of samples from
area 1.

Recently, a boosting algorithm for transfer learning,
TrAdaBoost, was proposed by Dai et al [6]. TrAdaBoost
is a transfer learning method based on the AdaBoost algo-
rithm, where more weights are given to samples misclassified
by a base learner and another base learner is subsequently
trained under the modified distribution to form an ensemble
of base classifiers. TrAdaBoost does not equally increase
weights of all samples misclassified by a base learner, but
increases weights of misclassified samples belonging to the
new dataset, and decreases weights of misclassified samples



belonging to the old dataset. In this paper, we propose a
method based on the same philosophy as in [6], modified for
an online active learning environment.

In active learning, we obtain an updated classifier when-
ever a new labeled sample is acquired. The updated classifier
is assumed to be more trustworthy than previous ones, since it
is trained with more information. Consequently, a cumulative
update as in boosting is not appropriate, since new weights
are largely affected by previous weights obtained from less
accurate classifiers. Some samples initially thought to be bad
could turn out to be useful in later stages as we gather more in-
formation on the new distribution, and vice versa. Therefore,
we construct a new distribution of weights for each classifier,
instead of applying cumulative updates.

Many different ways are possible for weight distribution.
The baseline strategy is to assign lower weights for misclas-
sified samples in DL, and higher weights for misclassified
samples in DN , the set of newly acquired labeled samples.
The proposed method is based on some qualitative analy-
ses, depending on the number of new and old labeled sam-
ples. Our first analysis is based on the assumption that hav-
ing more samples in DN results in a more reliable classifier,
which makes it more convincing that misclassified samples
from DL are less useful. Therefore, lower weights should
be assigned to misclassified samples in DL as we get more
samples in DN . Another observation is that although em-
phasizing misclassified points in DN accelerates the transfer
learning process initially, eventually it can make the classifier
sensitive to outliers or overfitted. For that reason, after we
get enough number of samples in DN , we should gradually
decrease weights of misclassified samples in DN .

In the proposed methodology, the weight updating rules
were determined heuristically after exploring several algo-
rithms based on the aforementioned qualitative observations.
Note that D∗

L is an augmented set of labeled data, D∗
L =

DL ∪ DN . Suppose wi is the weight associated with data
point xi, where (xi, yi) ∈ D∗

L and h∗ : X → Y is the current
hypothesis. Weights for sample points in D∗

L are calculated
as:

1) if (xi, yi) ∈ DL and h∗(xi) 6= yi,

wi = (1 + log |DN |)−1

2) if (xi, yi) ∈ DN and h∗(xi) 6= yi,

wi = 1+
εN

1 − εN
·log [|DN | · (|DL| − |DN |)]1(|DN |<|DL|)

3) if h∗(xi) = yi, wi = 1 .

1(|DN |<|DL|) is an indicator function, making wi = 1 for
(xi, yi) ∈ DN when |DN | ≥ |DL|. The parameter εN is
the error rate measured on the set DN , and the weight also
gets close to 1 when εN is very small. The mean and the
covariance of the class-conditional distribution, PDL

(x|y) are
estimated using weighted ML.

5. EXPERIMENTS

5.1. Data

The proposed method was evaluated on hyperspectral datasets
taken from NASA’s John F. Kennedy Space Center(KSC),
Florida [7] and the Okavango Delta, Botswana [8].

1) Kennedy Space Center (KSC): The NASA Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) data origi-
nally consists of 242 bands , but only remaining 176 bands are
used after removing noisy and water absorption bands. There
are 13 different land cover types including water and mixed
classes, which causes more difficulties in the classification.
Two different subsets of flight line, each with 512× 614 pix-
els with 18m spatial resolution, are used for experiments.

2) Botswana: Data from the Okavango Delta were ob-
tained by the NASA EO-1 satellite with the Hyperion sen-
sor on May 31, 2001. The area used for experiments has
1476 × 256 pixels with 30m spatial resolution, with 14 dif-
ferent land cover classes. The acquired data originally have
242 bands, and pre-processing of data resulted in 145 remain-
ing bands. Two spatially disjoint datasets are sampled from
the original hyperspectral image, and used as area 1 and 2
data.

5.2. Experimental Methods

Both datasets include hyperspectral data from two distant ar-
eas in the region. Each dataset from area 1 is randomly sam-
pled at 75% to construct a training set, DL and remaining
25% were used as validation data. Samples from area 2 were
used as unlabeled dataset, DUL. Best-bases feature extrac-
tion [9] and Fisher’s linear discriminant analysis are used for
dimensionality reduction. The number of bases for the best-
bases feature extraction was determined by using the valida-
tion set of area 1, and the number of bases with highest clas-
sification accuracy was selected. Roy and Maccullum’s sam-
pling method [10] was employed to reduce number of samples
used in the active learning. Class-conditional distribution was
assumed to be multi-variate Gaussians, and was estimated on
the area 1 dataset using ML estimation. Posterior distribution,
PDL

(y|x) was obtained after EM iterations, and a new labeled
sample (x̂, ŷ) is obtained as described in section 3. With the
new labeled data, distribution of the labeled samples are re-
weighted as in section 4. The re-weighted distribution is then
used as the initial distribution of subsequent constrained EM
process. Each experiment is repeated for 10 times to obtain
average accuracies and standard deviations.

6. RESULTS

Fig. 1 shows average classification accuracies and stan-
dard deviations from the proposed algorithm, KL-max, and
the baseline method, where samples from DUL are ran-
domly (passively) picked. In Fig. 1-(a), learning rates of
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(a) Botswana Learning Curves
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(b) KSC Learning Curves

Fig. 1. Experimental Results for Botswana and KSC Data

the proposed algorithm do not show significant improvement
from the KL-max algorithm for Botswana dataset while both
curves are far better than the baseline method. In the KSC
result, the gap between the proposed method and KL-max
is larger than the gap of KL-max and the baseline (random)
method. Figure 1-(b) shows that for the KSC dataset the
proposed approach performs much better than the KL-max
active learning method. This is because there is a greater
disparity in the spectral signatures of the classes between the
two areas of KSC data than areas of Botswana data.

7. CONCLUSION

In this paper, we proposed an algorithm for efficient active
learning with transferred knowledge based on the KL-max al-

gorithm by adjusting distributions of the labeled dataset. The
proposed method provides substantially superior empirical re-
sults when the discrepancy between the labeled and unlabeled
dataset is significant.
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