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ABSTRACT 
 
A new region-based methodology for the automated extraction and 
hierarchical segmentation of vegetation areas into high spatial 
resolution images is proposed. This approach is based on the 
iterative and cooperative fusion of the independent segmentation 
results of equal or different resolution spectral bands, combined 
with an unsupervised classification into vegetation and no-
vegetation regions. The result is a hierarchy of partitions with most 
relevant information at different levels of resolution of the 
vegetation areas. In addition, the high flexibility of the scheme 
allows different configurations depending on the final purpose. For 
instance, considering the size of the vegetation areas into the 
hierarchy, or prioritizing the information into the high resolution 
panchromatic band to improve the accuracy of both vegetation 
extraction and segmentation. This general tool for vegetation 
analysis is tested into high spatial resolution images from IKONOS 
and QuickBird satellites. 

Index Terms— Image segmentation, region merging, 
multispectral images, information fusion
 

1. INTRODUCTION 

High spatial resolution imagery offers new opportunities for 
potentially more accurate detection and classification than 
traditional satellite imagery. Nevertheless, an increasingly smaller 
spatial resolution causes that single pixels no longer capture the 
characteristics of classification target. Hence, an increasingly 
smaller spatial resolution does not necessarily benefit classification 
performance and accuracy for traditional pixel-based classification 
approaches [1]. Thus, preliminary feature extraction techniques are 
of great importance for the success of classification methodologies 
when applied to high resolution imagery. 
One important feature extraction approach is image segmentation. 
It partitions the image into a set of homogeneous regions under a 
certain criterion. Regions are a first level of abstraction, being 
more robust and semantically meaningful than pixels. A large 
number of algorithms have been proposed for image segmentation 
[2] but there has been little progress in the unsupervised 
segmentation of multispectral imagery [3-5]. These approaches do 
not consider the fact that the required level of detail into the 
segmentation depends on the final application, especially for 
vegetation characterization. Hence, a general tool for vegetation 
analysis should provide a hierarchical representation where, 
instead of a unique partition, different region-based explanations at 
different levels of detail are given. In addition, most of the 

previous techniques assume equal resolution bands and do not 
consider including higher resolution information, such as the 
panchromatic band. In general, the higher resolution information is 
included into the low resolution bands by an enhancement process 
based on image fusion techniques [6] at pixel level. However, it is 
not clear how image fusion influences the next steps into the 
processing chain, such as segmentation and classification. 
In this context we present a new region-based methodology for the 
automated extraction and hierarchical segmentation of high spatial 
resolution images. Although the proposed technique may be 
applied to the study of different types of information, this work 
focuses on the extraction and segmentation of the vegetation areas. 
This approach is based on a high level iterative and cooperative 
scheme that fuses the independent segmentation results of each 
spectral band and an unsupervised vegetation and no-vegetation 
classification. This strategy provides an unsupervised hierarchical 
segmentation of the vegetation areas of the image. The high 
flexibility of the proposed scheme allows obtaining: 

An unsupervised hierarchical vegetation segmentation for 
equal resolution bands (for instance, B, G, R, IR) including 
or not scale information into the hierarchy.
An unsupervised hierarchical vegetation segmentation for 
different resolution bands (for instance, including 
panchromatic information), improving the accuracy and 
resolution of both vegetation extraction and segmentation.

The proposed framework has been tested for high spatial resolution 
images from commercial satellites, such as IKONOS and QuickBird. 
The paper is structured as follows. Section 2 presents the general 
cooperative region merging scheme applied to the hierarchical 
multispectral segmentation. Section 3 presents the experimental 
results for the segmentation of equal resolution bands (Section 
3.1), and including the higher resolution panchromatic band 
(Section 3.2). Finally, conclusions are outlined in Section 4. 

2. MULTISPECTRAL COOPERATIVE REGION MERGING 

The general cooperative region merging strategy for multispectral 
hierarchical segmentation is presented in Figure 1. It is formed by 
five main steps: the region merging step, where the separated 
segmentation for each spectral band is performed; the 
segmentation fusion step, where the independent segmentation 
results of each band are combined into a consensus partition; the 
region-based classification step, where an unsupervised vegetation 
classification of the regions is performed; the meet step, where the 
classification and segmentation results are fused; and the scale 
filter, where the scale consistency of the partitions is assured. 
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The central idea is to let the system evolve by itself, starting with a 
basic agreement (given by an initial partition) and searching for 
partitions with decreasing number of regions by further consensus 
iteration after iteration. This is done instead of finding a coarser 
direct consensus partition for spectral band partitions (risking 
introducing under-segmentation errors). It can be shown that this 
iterative scheme provides with a partition hierarchy: iteration after 
iteration, a partition coarser than the previous partition is obtained. 
This scheme was successfully used into the joint segmentation of 
other types of information, such as color and depth information [7]. 

2.1 Region Merging Step 
 
A region merging step is associated with each criteria or 
information source. Starting from an initial partition of the image 
data (or directly all pixels at the first iteration), this step performs a 
region merging process providing a merging sequence of the 
regions in the initial partition according to the characteristics of the 
spectral band considered (see Figure 1). 
The region merging techniques used in this work are based on a 
modified version of the general region merging techniques based 
on information theory statistical measures proposed in [8] (here 
using the ASH probability density function estimator [9]). 
Precisely, a merging process formed by a Bhattacharyya merging 
criterion and a scale-based merging order is chosen for its good 
compromise between under- and over-segmentation errors, in the 
context of both color homogeneous and texture region segmentation. 

2.2 Segmentation Fusion: Maximum Mutual Information Partition 

The goal of this block is to determine a good consensus partition 
among the independent segmentation result of each band. In other 
words, observing the sequence of mergings we would like to 
determine the set of region fusions where the independent 
processes mostly agree. Hence, we search for the partition with 
smallest number of regions where the segmentation results of each 
band still have a large degree of agreement. This process is done in 
two steps: (i) creating a fused merging sequence among the 
different segmentation results; and (ii) determining the partition 
within the fused merging sequence with smallest number of 
regions that still shows a large degree of agreement with respect to 
the segmentation of the individual spectral bands. 

2.2.1 Creation of a fused merging sequence 
To have a common reference, the merging sequences are written in 
terms of the removal of the boundaries between regions of the 
initial partition. For instance, removing boundary (A, B) is 
equivalent to merging regions A and B of the initial partition. The 
fused merging sequence is then a new boundary removal ordering 
obtained after combining the orderings provided by the region 
merging process of each band. Common combination functions are 
the maximum (preventing undersegmentation), minimum 
(preventing oversegmentation), or mean (compromise).

2.2.2 Determining the multispectral consensus partition 
Once the fused merging sequence has been computed, the next step 
is to determine the segment of mergings where segmentation 
results in each band present a significant agreement. The partition 
at this point will be considered as the consensus partition among 
the different spectral bands. 
To study the evolution of the agreement into the merging process, 
the difference in priority given by each individual band and the 

new fused sequence is computed and ordered according to the 
fused sequence. In general, the differences in priority are small for 
the first region mergings (merging decisions are clear at this stage). 
Nevertheless, as the merging process continues, the differences 
increase as regions present more complex models and depend on 
previous decisions. Hence, the initial correlation of the different 
sequences decreases and, at some point, they significantly diverge. 
We model this behavior as follows. Consider the merging sequence 
of a spectral band, 1, , nX x x , and the fused sequence, 

1, , nY y y  obtained combining the merging sequences of the 
multispectral bands (as explained in Section 2.2.1). We expect that 
both sequences have a significant correlation at an initial segment 
that is not present after this point (both sequences can be 
considered independent). Under these premises, their mutual 
information is given by ( , ) ( ) ( | )I X Y H X H X Y , where the 
conditional entropy can be written as: 

1 1 1( | ) , , | , , , ,k k k nH X Y H x x y y H x x  (1) 

The first term on the right represents the conditional entropy in the 
part where both sequences are correlated, and the second refers to 
the segment where they significantly differ. 
To compute the first term we assume that the difference between 
the merging sequence of a band and the fused sequence in the part 
where both sequences are similar can be considered as independent 
samples of a certain random variable, e. In turn, the second term is 
determined assuming that the probability of all mergings at a 
certain stage is equally likely (which may be true assuming no 
knowledge on the merging processes carried in each band), and 
assuming that the order given to each element is independent of the 
previous mergings (which is a simplification, since larger regions 
will be formed by the merging of elementary regions, as thus, may 
partially depend on previous fusions). Thus, 

1
| ( ) log

n

j k

H X Y k H e n j    (2) 

In this context, finding the initial segment where both sequences 
mostly agree is equivalent to determine the value of k that maximizes 
the mutual information. Using the same assumption to compute the 
entropy of the merging sequence, ( )H X , as before, we obtain: 

1
arg max ( | ) arg max log ( )

k

k k
j

k I X Y n j k H e    (3)

Figure 1. Cooperative region merging scheme for multispectral 
hierarchical vegetation extraction and segmentation. 
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This expression can be extended to the set of merging sequences 
obtained from each spectral band: 

1arg max ( , , | )Mk
k I X X Y   (4) 

where  

1
1

, , ; ;
M

M k i
i

I X X Y I X Y   (5) 

considering merging sequences independent between them. Finally, 
multispectral consensus partition is obtained, using a conservative 
approach, by the removal of the first 0.75 k initial boundaries. 

2.3 Region-Based Classification 

This block performs an unsupervised classification into vegetation 
and no-vegetation of the regions into the initial partition at the 
current iteration, using the information provided by the normalized 
differential vegetation index (NDVI) [10]. For each region, the 
NDVI mean value over all its pixels is determined. Then, regions 
are classified based on their mean NVDI index into two classes 
using k-means or fuzzy k-means algorithm. The vegetation 
partition that is fused with the multispectral consensus partition (see 
Section 2.5) is obtained by relabeling the vegetation classification. 

2.4 Meet Step 

The meet operation outputs the intersection of the input partitions, 
that is, a partition that includes all boundaries present in the input 
partitions. In other words, pixels with equal label vectors (each 
component being the label at a particular band) belong to the same 
region into the meet partition. 
The goal of this block is to assure that the relevant information 
about the vegetation and no-vegetation areas is preserved into the 
consensus partition of the multispectral bands. In that sense, the 
vegetation partition is included as prioritary information into the 
system, preventing vegetation and no-vegetation areas to merge. 

2.5 Scale Filter 

The scale filter assures the scale consistency of all the obtained 
partitions, that is, removes the set of regions that are too small to 
be significant at the current level of resolution. For that purpose an 
adaptive scale threshold is defined on the region areas, similarly to 
the scale-based merging order used in [8]: 

scale
Image Area

Number of Regions
T    (6) 

The  parameter controls the minimum resolution at each scale. In 
our experiments, we have chosen a low value for this parameter, 

=0.07 , to be sure that only clearly meaningless regions at that 
scale are discarded. Out-of-scale regions are merged according to 
the most reliable or relevant available information. For instance, 
for equal resolution channels NVDI is used (see Section 3.1) and 
so is the panchromatic band for the different channel resolution 
configuration (see Section 3.2). As the scale-filtered partition is a 
coarser partition that the previous one, the hierarchical structure of 
the output partitions is maintained. 
As shown in Figure 1, the position of the scale filter determines 
whether the area of the vegetation is introduced or not into the 
created hierarchy. If the filter is placed before the meet operation 
(Position A), isolated vegetation areas are preserved into the 
hierarchical segmentation, independently of their size. On the 

contrary, if the scale filter is located after the meet operation 
(Position B), only the vegetation areas that are large enough to be 
significant at the given scale are preserved. 

3. EXPERIMENTAL RESULTS 

The performance of the proposed framework has been tested for 
high spatial resolution images from commercial satellites, such as 
IKONOS (four channels of multispectral data at 4 m resolution and 
one panchromatic channel at 1 m resolution) and QuickBird (four 
channels of multispectral data with 2.4 m resolution and one 
panchromatic channel with 0.6 m resolution). 

3.1 Configuration for Equal Resolution Bands 

In this first case, four different bands with equal resolution (B, G, 
R, IR) were considered for each multispectral image. As shown in 
Figure 1, each band was injected to a different region merging 
process. NDVI was computed and used as input for the region-
based classification block. Independently of its position, the scale 
filter used the NDVI to merged out-of-scale regions. 
In Figure 2, an example of the hierarchical segmentation results 
obtained on a 221x261 subimage of a Quickbird multispectral 
image is shown. In this case, the maximum of the merging 
sequences was used to create the consensus partition among the 
different segmentations of each band. We observed that the results 
are similar for the maximum and mean functions, and significantly 
worst for the minimum. In the presented example, the scale filter is 
set in Position A (see Fig. 1) such that the vegetation area is not 
included into the partition hierarchy. The same configuration but 
including the area into the hierarchy is shown in Figure 3 for the 
same subimage. Note that in this case, as the level of detail into the 
hierarchy decreases, only the vegetation areas with enough area to 
be relevant at the given scale are preserved.  
Applications analyzing vegetation areas independently of their 
size, and hence, interesting on preserving even small vegetation 
areas will find into the first configuration a valuable solution. 
Moreover, applications searching for vegetation areas of a certain 
size, or interested on the granularity and distribution of the green 
areas, will prefer the second configuration. 

3.2 Configuration for Different Resolution Bands 

In this case, in addition to the four equal resolution bands used in 
the previous experiments (B, G, R, IR), the panchromatic band was 
also used. To provide with partitions of equal resolution the four 
bands of equal resolution were interpolated by a factor of four 
using nearest neighbor interpolation algorithm. Instead of the 
NDVI, the panchromatic band was used by the scale filter 
(independently of its position) to merge out-of-scale regions, as it 
is considered as the most accurate channels thanks to its higher 
spatial resolution. 
An example for a subset of 201x146 pixels into the low resolution 
bands (804x584 pixels at the panchromatic band) image is shown 
in Figure 4. The hierarchical segmentation using only the equal 
resolution bands and including also the panchromatic band were 
computed. In both cases, the maximum function was used for the 
combination, and the vegetation area was not included into the 
hierarchy. From the two levels of the partition hierarchy shown, it 
can be seen that the use of the panchromatic information improves 
the correct segmentation of the field structures (that is more 
evident at the partition with higher level of detail), and also is able 
to improve the classification into vegetation and no-vegetation 
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Figure 4. Hierarchical vegetation segmentation of Quickbird
subimage. The first row shows the color (R,G,B composition)
image (top-left), the NDVI index (bottom-left), and the
panchromatic band (right) (not at their proportional scale). Second
row shows the results for two different levels of the partition
hierarchy using B, G, R, and IR bands (equal resolution channels) in
the segmentation process. The third row shows partitions at similar
levels of the hierarchy for the scheme configuration including also
the panchromatic band. 

areas (more evident at the partition with less level of detail).  
Thus, the previous results show that including more accurate 
spatial information (panchromatic band) not only improves the 
segmentation of the multispectral images, but also the 
classification performance into vegetation and no-vegetation areas. 
This is a consequence of the cooperation between the segmentation 
and classification stages proposed in our scheme. 

4. CONCLUSIONS 

The presented results show that the proposed hierarchical 
multichannel segmentation approach provides an unsupervised and 
flexible tool for the analysis and classification of vegetation into a 
broad range of remote sensing applications. 
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Figure 3. Example of different levels of segmentation obtained
including the vegetation area into the creation of the hierarchy
(Position B), using the same image as in Figure 2.  

    

Figure 2. Hierarchical vegetation segmentation of a Quickbird
subimage. First row. Left: Portion of original multispectral image
(R,G,B composition). Righ: NDVI index. Second row: Two
different levels of the hierarchy of partitions. Example computed
using maximum fusion criteria and not including the vegetation area
into the hierarchy (Position A). No-vegetation areas are in white. 
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