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ABSTRACT

In civil engineering, usually the methods used to estimate the
thickness of thin pavements consider flat interfaces for simpli-
fication. In this paper, the roughness of the surfaces is taken
into account. First, the amplitudes of the first two echoes
from the rough thin pavement are calculated from a rigorous
electromagnetic method, the PILE method. A comparison is
then made with the flat interface case, and their differencesin
the electromagnetic backscattering are highlighted. Eventu-
ally, the influence of the pavement roughness on the pavement
thickness estimation is investigated by using the Maximum
Likelihood Method.

Index Terms— Radar scattering, Electromagnetic scat-
tering by rough surfaces, Ground wave propagation, Nonde-
structive testing, Delay estimation

1. INTRODUCTION

Ground penetrating radar (GPR) is a useful means of me-
dia sounding, which is widely used at centimeter-scale wave-
lengths in road surfaces evaluation [1, 2, 3]. In this context,
the roadway is usually considered as made up of perfectly flat
stratified interfaces. Then, the vertical structure of the road-
way is deduced from radar echo detection and amplitudes es-
timation. Echo detection provides the time-delay estimation
(TDE) associated with each interface, and amplitude estima-
tion is used to retrieve the wave speed within each layer. The
case of small pavement thicknesses was studied in a recent
paper [3].

In general, classical methods of pavement thickness esti-
mation assume flat interfaces for the pavement. Even if this
first approximation has sense and is rather realistic, to our
knowledge the validity domain of this approximation, and its
influence on the electromagnetic backscattering and on the
GPR process have not been studied in details. This is the
scope of this work. Thus, in this paper, the surface roughness
of the pavement is taken into account in the electromagnetic
backscattering modeling and in the GPR thickness estimation
process, and compared with the case of neglecting the rough-
ness of the pavement.

First, the amplitudes of the first two echoes from the rough
thin pavement are calculated with a rigorous electromagnetic
method, namely the PILE method [4]. The frequency behav-
ior of the echoes is then presented in the considered frequency
band,f ∈ [1.0; 3.0] GHz, comparatively to the echoes ob-
tained for flat interfaces. Finally, the influence of the pave-
ment roughness on the thickness estimation is investigatedby
using the Maximum Likelihood Method.

2. ECHO AMPLITUDES: FREQUENCY BEHAVIOR

In this section, the frequency behavior of the first two
backscattered echoess1 ands2 of a rough pavement is pre-
sented. To calculate the echoes within the frequency band
f ∈ [1.0; 3.0] GHz, the PILE (Propagation Inside Layer
Expansion) method [4] is used. It is a Method-of-Moments
based method which is able to compute rigorously each echo
reflected by a flat or a rough layer.

2.1. Simulation parameters

The pavement under study is an Ultra Thin Asphalt Surfacing
(UTAS) of thicknessH = 20 mm [5], overlying a rolling
band of same general composition. It is assumed that the
UTAS and the rolling band can be assimilated to homoge-
neous media at the frequency band under studyf ∈ [1.0; 3.0]
GHz [3, 6, 7]. Their relative permittivities typically range be-
tween4 and8 [8], and their conductivities between10−3 and
10−2 S/m [9]. For the simulations, their relative permittivi-
ties are taken asǫr2 = 5 andǫr3 = 8, respectively, and their
conductivities asσ2 = 5 × 10−3 S/m andσ3 = 10−2 S/m,
respectively. The two rough interfacesΣA andΣB are as-
sumed to be described by a Gaussian height probability den-
sity function (pdf), and an exponential auto-correlation func-
tion [10, 11]. For the upper interfaceΣA, the root mean
square (rms) heightσhA is of the order of1 mm, and the cor-
relation lengthLcA of the order of5 − 10 mm. For the lower
interfaceΣB , the rms heightσhB and the correlation length
LcB are a bit greater. For the simulations, the chosen param-
eters areσhA = 0.8 mm, LcA = 10.0 mm, σhB = 1.6 mm,
andLcB = 30.0 mm. In practice, the two rough surfaces are



only very weakly correlated, so that it can be assumed here
that they are statistically uncorrelated.

Concerning the incident wave, a monochromatic incident
wave of TM polarization (also called vertical polarization) is
considered, with normal incidence onto the pavement,θi = 0.
The emitter antenna is assumed to be in the far-field zone
of the ground, so that the incident wave is assumed to be
plane. The typical width of the central zone illuminated by
the emitter antenna is of the order of100 − 200 mm [12].
Then, for the simulations of the numerical method, surfaces
of lengthL = 600 mm will be considered, illuminated by
a Thorsos beam of attenuation parameterg = L/6. A nor-
mal incident wave (with incidence angleθi = 0) is taken,
and the first two orders of the reflected echoes by the rough
layers1 ands2 are calculated under the PILE method. Then,
to determine the frequency behavior of the received echoes
sk ≡ sk(f) (see equation (2) of [3]) in the backscattering
directionθs = θi = 0, it is necessary to run the numerical
simulation scenario at different frequenciesf within the con-
sidered bandwidth,f ∈ [1.0; 3.0] GHz.

The numerical process is described as follows. The rough
layer, with two independent rough surfaces, is generated bya
Monte-Carlo process (the two rough surfaces being generated
from independent processes), for which the calculation of the
backscattered signalss1 ands2 is led with the PILE. In order
to study the variability of the echo amplitudess1 ands2, sev-
eral independent Monte-Carlo processes are generated. Thus,
it is possible to estimate the standard deviations of the echo
amplitudes, and even a profile of their calculated probability
density functions if a significant number of realizations isled
(typically, of the order of10000 [13]). Indeed, for a prac-
tical scenario, the illuminated surface area is of the orderof
100−200 mm, which is not large in comparison with the two
surface correlation lengthslcA = 10.0 mm andlcB = 30.0
mm. This implies that the received echo amplitudes depend
on the location of the pavement where the measurement is
made. As a consequence, in order to study the variability of
the received echo amplitudes, a significant number of realiza-
tions must be generated.

To compute the numerical results, at least1000 indepen-
dent realizations of a Monte-Carlo process are generated, in
order to simulate the variability of the received echoes. For
the simulation of the numerical method, the two rough inter-
faces are sampled with a sampling step∆x = λ2/10, with λ2

the wavelength inside the inner mediumΩ2.

2.2. Numerical results

First, numerical simulations are led at a fixed radar frequency
f , in the middle of the radar band under study, i.e.f = 2.0
GHz. In order to study the probability density function (pdf)
of the echoess1 and s2, the number of realizations of the
Monte-Carlo process is taken as10000. A comparison is also
made between the case with rough interfaces and the case
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Fig. 1. Probability density functions (pdf) of the first echo
s1 (real part, imaginary part, modulus and phase) obtained
from 10000 realizations, at a radar frequencyf = 2 GHz.
The mean value is plotted in red dashed vertical line, and the
mean value plus and minus the standard deviation are plotted
in purple dashed vertical line. Then, the pdf is compared with
a Gaussian pdf having the same mean value and standard de-
viation. Comparison is also made with the flat case in green
vertical line.
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Fig. 2. Same simulation parameters as in Fig. 1, but for the
second echos2

with flat interfaces. Numerical results of the simulated pdfs
are plotted in Fig. 1 for the first echos1, and in Fig. 2 for the
second echos2. In each figure, the pdf of the real part, the
imaginary part, the modulus, and the phase (in degrees) of the
echo are represented. The mean value is plotted in red dashed
vertical line, and the mean value plus and minus the standard
deviation are plotted in purple dashed vertical line. Then,the
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Fig. 3. Frequency behavior of the real part of the first two
echoess1 ands2

pdf is compared with a Gaussian pdf having the same mean
value and standard deviation in full red line. A comparison
is also made with the case of flat interfaces (whose pdf is a
Dirac delta function) in green vertical line.

Concerning the first echos1, the imaginary part and the
phase do not highlight a significant difference between the
flat case and the mean value of the rough case. Moreover, the
dispersion around this mean value remains low: for instance,
in the phase distribution, the RMS phase is of the order of1
degree. By contrast, a relatively small but though significant
difference occurs in the real part and in the modulus. As ex-
pected, the (upper) surface roughness induces a decrease of
the echo (real part or modulus) comparatively to the flat case.
However, this decrease remains small owing to the small elec-
tromagnetic roughness of the surface at this typical frequency.
Moreover, the dispersion around this mean value remains low.
The general shape of the pdf resembles a Gaussian for the
imaginary part and the phase. For the real part and the mod-
ulus, the shape differs only slightly from a Gaussian, and is
assimilated to a Gaussian as well in first approximation.

The same qualitative observations can be made for the
second echos2. In this case, the relative differences between
the flat case and the mean value of the rough case are higher,
owing to the larger electromagnetic roughness of the layer.

Second, in what follows the frequency behavior of the
echoess1 and s2 is investigated in the whole range of the
two radar frequency bands under study, i.e. forf ∈ [0.5; 3.0]
GHz, for which1000 Monte-Carlo processes were used.

Fig. 3 presents the frequency behavior of the real part
of the first two echoess1 ands2. The flat case is plotted in
green full line, the mean value of the rough case in red circled
dashed line, the mean value plus or minus twice the standard
deviation of the rough case in magenta circled dash-dot line,
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Fig. 4. RRMSE variations on the two estimated time delays
T̂1 andT̂2, as well as on the layer thicknesŝH, vs. the SNR

and one realization of the rough case in blue dotted line with
plus signs. The results highlight that as the radar frequency in-
creases, the amplitudes of the backscattered echoess1 ands2

decrease, because the layer (electromagnetic) roughness in-
creases relatively to the wavelength. Moreover, for the lower
frequenciesf ≈ 1 GHz, it can be seen that the difference
with the flat case is relatively weak and could be neglected.
On the contrary, for the higher frequenciesf ≈ 3 GHz, the
relative difference with the flat case is significant and cannot
be neglected any more, as it exceeds10 percent for instance
for s2. Thus, significant differences appear in the backscat-
tered echoess1 ands2 between the rough and flat cases, in
particular for the higher frequencies.

Then, let us have a look at the consequences of these dif-
ferences in the electromagnetic backscattering on the thick-
ness estimation by GPR, with the Maximum Likelihood
Method (MLM).

3. THICKNESS ESTIMATION BY GPR

The process to determine the time delays of the first two
echoes is explained in details in [3]. To perform time delay
estimation (TDE), the MLM is used. An additive complex
Gaussian white noise is considered to model the measurement
uncertainties and the noise in the instruments. The radar pulse
is a ricker pulse, defined as the second derivative of a Gaus-
sian pulse. The data vector is made of5 samples within the2
GHz frequency bandwidth (see Fig. 3). The scenario under
study is the same as described in the previous section. Thus,
the data (i.e., the echo amplitudess1 ands2) used to deter-
mine the time delays correspond to the realization plotted in
blue dotted line with plus signs in Fig. 3.

Fig. 4 represents the relative root mean square error



(RRMSE) variations on the two estimated time delaysT̂1 and
T̂2, as well as on the layer thicknesŝH, vs. the signal-to-noise
ratio (SNR), for the frequency bandf ∈ [1.0; 3.0] GHz. First,
for both flat and rough cases, it can be seen that the RRMSE
decreases with increasing SNR. A difference between the flat
and rough cases is observable inT̂1 for SNR higher than40
dB, in T̂2 for SNR higher than25 dB, and inĤ for SNR
higher than25 dB.

As a consequence, taking the roughness of the surfaces
into account makes it possible to increase the performancesof
the algorithm for moderate to high SNR. Thus, in the context
of high SNR, it is important to take the roughness into account
in the data modeling to obtain very low RRMSE, and this
modeling allows in this case an even better precision of the
thickness estimation. On the other hand, for low SNR and/or
for a first estimate of the pavement thickness, these results
confirm that taking the surface roughness into account is not
necessary: this phenomenon can be neglected in this other
context, as usually done in many previous studies.

4. CONCLUSION

In conclusion, taking the surface roughness into account inthe
pavement thickness estimation by standard GPR of bandwidth
of the order of2 GHz allows us to quantify the classical ap-
proximation which considers flat interfaces. Thus, for typical
pavements encountered in practice, like hereB = [1.0; 3.0]
GHz in Fig. 4, the difference between the rough and the flat
cases in the backscattered echoes amplitudes is significantfor
the higher frequencies of the bandwidth. Then, the influence
of this difference in the GPR estimation process is significant
for moderate to high SNR (typically,25 dB for the thickness).
As a consequence, taking the roughness into account in the
data model is of interest, and this modeling allows a better
precision in the thickness estimation process.
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