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ABSTRACT

This paper proposes to learn the relevant features of remote
sensing images for automatic spatio-spectral classification
with the automatic optimization of multiple kernels. The
method consists of building dedicated kernels for different
sets of bands, contextual or textural features. The optimal
linear combination of kernels is optimized through gradi-
ent descent on the support vector machine (SVM) objective
function. Since a naı̈ve implementation is computationally
demanding, we propose an efficient model selection pro-
cedure based on kernel alignment. The result is a weight
–learned from the data– for each kernel where both rele-
vant and meaningless image features emerge after training.
Excellent results are observed in both multi and hyperspec-
tral image classification, improving standard SVM and other
spatio-spectral formulations.

Index Terms— Support vector machine (SVM), Multiple
kernel learning (MKL), SimpleMKL, kernel alignment, im-
age classification.

1. INTRODUCTION

The increase in spatial and spectral resolution of satellite sen-
sors has provided new tools for describing and modelling the
Earth’s surface. This allows us to indentify materials on the
land cover analyzing the acquired data. These theoretical ad-
vantages also pose some hard problems and new challenges in
terms of remote sensing image processing: 1) the high num-
ber of redundant bands induce collinearity problems and the
well-known overfitting phenomenon and, 2) since images are
also spatially redundant, this knowledge must be included in
the classifier through careful spatial processing techniques.
Nevertheless, the evaluation of the relevance of the extracted
(both spectral and spatial, contextual or textural) features is
a difficult problem. Building classifiers in such scenarios in-
volve high-dimensional data processing and thus create the
need for i) classifiers that are efficient and robust in high di-
mensional spaces and for ii) feature selection routines capable
to select features that are discriminative to solve the problem.

Regarding classifiers, kernel methods in general and sup-
port vector machines (SVM) in particular have been shown to
be robust methods capable of handling high dimensional input
spaces. SVM have been successfully applied to a wide range
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of remote sensing problems dealing with spectral [1, 2], con-
textual [3] and multi-temporal and multi-source [4, 5] infor-
mation. Regarding feature selection, several strategies have
been discussed in the remote sensing literature. Two main
strategies exist: filter [6] and wrapper [7] methods. Filter
methods use an indirect measure of the quality of the selected
features, e.g. evaluating the correlation or the mutual infor-
mation between each input feature and the observed output
(class). A faster convergence of the algorithm is thus obtained
but i) they may fail to select the right subset of features if
the used criterium deviates from the one used for training the
learning machine, and ii) the combination of features to ex-
plain (learn) a problem is not considered. On the other hand,
wrapper methods use as selection criteria the goodness-of-fit
between the observed and provided output by the learning ma-
chine under consideration. This approach guarantees that, in
each step of the algorithm, the selected subset improves per-
formance of the previous one.

In this paper we propose an embedded (wrapper) method
integrating feature selection and classification within the
framework of multiple kernel learning (MKL) [8, 9, 10]. The
goal is to learn the relevant features of remote sensing im-
ages for automatic spatio-spectral automatic classification.
The method consists of building dedicated kernels for dif-
ferent features. The optimal linear combination of kernels
is optimized through gradient descent on the support vector
machine objective function. The result is a weight –learnt
from the data– for each kernel where both relevant and mean-
ingless image features emerge. Since a naı̈ve implementation
is computationally demanding, we propose an efficient model
selection procedure based on kernel alignment [11]. The re-
sult is a weight –learnt from the data– for each kernel where
both relevant and meaningless image features emerge after
training.

The remainder of the paper is organized as follows. Sec-
tion 2 revises the MKL framework. Noting that a critical point
is the definition of the family of ‘kernels on features’, a de-
tailed discussion on model selection and design is given in
Section 3. Section 4 shows the experimental setup and ob-
tained results. Finally Section 5 concludes the paper.

2. EFFICIENT MULTIPLE KERNEL LEARNING

This section reviews the main formulation for learning with
a linear combination of kernels. This is known as multiple
kernel learning (MKL). Then an efficient method for solving
the problem, named SimpleMKL, is described in detail.



2.1. Multiple kernel learning

Kernel methods are state-of-the-art algorithms for learning
from data and have demonstrated excellent results in remote
sensing [5]. Both for training and prediction only defining
a distance metric (the kernel) is needed. Success of kernel
methods depends strongly on the data representation encoded
into the kernel function: such a function defines the similarity
between examples and must be chosen carefully, in order to
be as discriminative as possible. For classification, the form
of the decision function is: f(x) =

∑l
i=1 yiα

∗
iK(x, xi)+ b∗,

where α∗i and b∗ are coefficients to be learnt from data, yi
are training data labels and K(·, ·) is a positive definite kernel
function. Common kernels, like the polynomial or the radial
basis function, are rigid representations of the data, that may
be replaced by more flexible and data-adapted kernels. The
use of multiple kernels can enhance the performance of the
model and, more importantly, the interpretability of the re-
sults [8]. A mutiple kernel K(x, x′) is a convex combination
of basis kernels:

K(x, x′) =
M∑
m=1

dmKm(x, x′) (1)

Multiple kernel learning aims at simultaneously optimize the
αi and the dm subject to dm ≥ 0 and

∑M
m=1 dm = 1. Even

being a very attractive formulation, it becomes rapidly intra-
cable with the increase of training examples and number of
kernels.

2.2. Simple Multiple Kernel Learning

Simple MKL is an efficient algorithm to solve the problem
[12]. Similarly to [9], Simple MKL wraps a SVM solver with
a single kernel, which is already the linear combination in
Eq. (1). Essentially, the algorithm is based on a gradient de-
scent on the SVM objective value:

min
d
J(d) such that

M∑
m=1

dm = 1 , dm ≥ 0 (2)

where

J(d) =


min{f},b,ξ 1

2

∑
m

1
dm
‖fm‖2Hm

+ C
∑
i ξi

s.t. yi
∑M
m fm(xi) + yib ≥ 1− ξi

ξi ≥ 0
(3)

Note that J(d) is the formulation of a classical SVM for
a kernel composed by a linear combination of sub-kernels. It
can be proven that, for positive definite kernel matrices Km,
J(·) is convex and differentiable and can be resolved by com-
puting the reduced gradient∇redJ for each non-zero entry of
d. Such a gradient allows to compute the descent direction D
for updating d. The usual update scheme for this gradient is
d← d+ γD, where γ is the optimal step size. The algorithm
iterates the following steps until convergence:

1. Set d = 1
M . Compute J(d).

2. Compute ∇redJ . Find the descent directions Dm.

3. i. Find the maximum admissible step size, which is
met when a component dv is set to 0.

ii. Compute the new J(d)
iii. If J(d) decreased, update dv , setDv to 0 and nor-

malize d.
iv. Repeat i. to iii. until J(d) stops decreasing.

4. Find the optimal γ by line search.

During the algorithm, the SVM solver is called several times,
which may seem very costly. Nonetheless, if the α values are
initialized with the values found previously, for small varia-
tions of d the SVM is solved very fast. Besides, the gradient
is not computed after each update of d, but only once the ob-
jective function stops decreasing.

3. MODEL SELECTION WITH KERNEL
ALIGNMENT

In the original implementation of SimpleMKL [12], model
selection was performed by building several kernels with dif-
ferent kernel parameters. This way, the optimization of the
dm’s weights allowed to find automatically the best combina-
tion by finding the non-zero weights. No stricto-sensu model
selection is performed. It also occurs that the same variables
are used several times in different kernels, providing a natural
multiscale solution.

For the purpose of feature selection in multidimensional
data, we may build as many kernels as we have initial vari-
ables. Thus, in the case of remote sensing images and when
confronted to datasets carrying more than one hundred bands,
such a strategy would imply the creation (and storage in mem-
ory) of several hundreds of kernels. This problem precludes
the use of the original formulation of SimpleMKL for prob-
lems including thousands of training pixels.

To overcome this problem, in the experiments below we
estimate the optimal values of kernel parameters before train-
ing the model. To do this, we use the concept of kernel align-
ment [11], a measure of similarity between matrices. Given
a kernel matrix K, and a vector of labels y ∈ {−1, 1}, the
alignment between them can be written as:

A =
〈K,yy>〉F√

〈K,K〉F 〈yy>,yy>〉F
, (4)

where 〈·, ·〉F stands for a Frobenius product between matri-
ces such as 〈M,N〉F =

∑
i,jmijnij . Since the kernel shows

high values for similar points, the alignment can be seen as a
correlation coefficient between the kernel values and the cor-
rect labels assignments. It can take values in the range [−1, 1].
In the case of multiclass classification, the ideal kernel yy>
must be replaced by a kernel returning the value 1 if the con-
sidered pixels belong to the same class and 0 otherwise. The
advantage of this solution is that it speeds up consistently the
analysis, because a (n×n×N) kernel is stored and analyzed,
despite of a (n× n×Nk), where n is the number of training
pixels, N is the number of features and k is the number of
kernel parameters to chose upon.



In [11], kernel alignment was used to evaluate combina-
tions of kernels: if two kernels are aligned with the labels vec-
tor and not aligned with each other, their combination will be
valuable to solve the problem, because both kernels contain
independent information. In our setting, we select the best
candidates for SimpleMKL by maximizing the alignment of
each feature’s kernels Km with the output vector. Then, Sim-
pleMKL selects the best combination to solve the problem.

4. DATA AND EXPERIMENTS

This section describes the multi and hyperspectral image
datasets, the experimental setup and shows the feature selec-
tion and classification results.

4.1. Contextual Multispectral Image Classification

The first image considered is a 0.6 m multispectral scene
taken in 2004 by the QuickBird sensor over a part of the city
of Zürich, Switzerland. Five classes of interest are consid-
ered: Building, Road, Vegetation, Shadow and Water. Four
multispectral bands, accounting for RGB and near infrared
channels and 18 spatial features extracted using opening
and closing by reconstruction morphological filters are used.
Three experiments are carried out:

(OM) Each of the 22 features is encoded into a separate ker-
nel. The model selection is done as proposed in [12]
(see Sect. 3). Four values of σ are considered for each
feature, resulting in a total of 88 kernels.

(OA) The 22 features are considered separately, but the
model selection is carried out by evaluating the align-
ment with the ideal kernel Kideal = yy>.

(GM) Three groups of features are used to build 3 kernels:
multispectral (4 features), opening (9) and closing (9).
Model selection is carried out as in the OM experiment,
for a total of 12 kernels.

In all cases, RBF kernels are used. Regularization parame-
ter C is found by cross-validation. Experiments using n =
{2, 5, 10, 20, 50, 70, 100} labeled pixels per class are shown
below. Validation of the models is carried out on 97,000 pix-
els.

4.2. Physically-based Hyperspectral Image Classification

The second case study is a hyperspectral image acquired
in 1999 by the HyMap airborne spectrometer during the
DAISEX99 campaign. The image has 128 bands in the re-
gion 0.4µm - 2.5µm and a resolution of 5m. The six classes
of interest are: Corn, Sugar beets, Barley, Wheat, Alfalfa, and
Soil [1].

Four experiments are carried out: for the OM and OA
experiments, the 128 bands are used separately, in the same
way as for the Zürich image. For the GM experiment, three
groups of bands are chosen with respect to the physical prop-
erties of the bands [1]: leaf pigments (bands 1 − 23), cell
structure (24− 57), and leaf water content (58− 128). These
three experiments’ results are omitted for lack of space. In the
fourth experiment, named 6MKL, the six most useful bands

Table 1. Representative bands extracted in [1].
Bands λ [µm] Characteristics

6 0.5030 Leaf pigments (carotenes and chloro-
phylls).

17 0.6710 Chlorophylla-a maximum absorption.
22 0.7470 Red edge (change Visible-Near Infrared).

Leaf Area Index.
24 0.7770 Beginning of Near InfraRed (NIR) with

high reflectance and low absorbance. Leaf
biomass and structure.

99 1.9860 Water absorption. Soil moisture and leaf
water content.

118 2.3210 Water absorption. Dry matter and soil
minerals.

are first selected with SimpleMKL (using the OA strategy,
see Fig. 2) experiment and then an additional OA model with
these six features only is trained. Thus, in this experiments
SimpleMKL is used as pure a feature selection algorithm. Re-
sults of 6MKL experiment are compared with a OA model
trained using the six most important bands highlighted after
physical analysis in [1]. This last model is called 6CART.

RBF kernels are used. Regularization parameter C is
found by crossvalidation. Experiments using n = {2, 5, 10,
20, 50, 70} labeled pixels per class are considered. Validation
of the models is carried out on 900 labeled pixels.

4.3. Results and discussion

Overall accuracy curves are reported in Fig. 1. This figure
shows the average and standard deviations over 10 indepen-
dent runs of the algorithm. For the Zürich image, the ex-
periments with Simple MKL clearly outperform the standard
SVM, showing that by weighting the importance of the fea-
tures, we can construct efficient, yet ad-hoc, kernel machines
encoding the relationship between the observed data. For the
hyperspectral image, righside of Fig. 1 show the comparison
between a standard SVM trained using the six bands high-
lighted in [1] and models built using the six most important
bands highlighted by SimpleMKL. Fig. 2 illustrates the iter-
ative optimization of weights d for the OM and OA experi-
ments for the two images.

In terms of overall accuracy, the GM experiment shows
the best results for the QuickBird image. The simplicity
of this solution confirms the intuition that each type of in-
formation may be related to different parameters. The OA
experiment shows good performances, even if inferior than
the GM’s: the pre-computation of the alignment avoids op-
timizing an 88-dimensional vector and the benefits of using
such methods can be observed when few labeled examples are
available. Finally, the OM experiment shows slower conver-
gence to optimal results than the GM, but allows to visualize
the chosen features (Fig. 2, top row): starting by a uniform
configuration of weights (dm = 1/M = 0.011,∀m ∈ M ),
the near infrared band is given a strong weight after 5 iter-
ations. The blue and green bands are also selected in the
following steps. Regarding the morphological features, clos-
ing features related to large structuring elements are retained
and all the openings is concentrated into a single feature.
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Fig. 1. Overall accuracy curves for (left) the QuickBird image
and (right) the HyMap image.

Note that the solution shown in Fig. 2 is multiscale in the
sense that two kernels using different σ are retained into the
final solution for the blue or NIR bands. These kernels en-
code short- and middle signal relationship between training
data.

Results in the HyMap data confirms the ability of Sim-
pleMKL to select the relevant image features. The 6MKL
experiment equals the performance of both the standard SVM
using the 128 bands and the 6CART experiment. Nonethe-
less, a strong decrease in performance is observed for very
small number of training pixels (2 and 5 per class), show-
ing a tendence to overfitting for ill-posed situations. How-
ever, the overall results are similar to the ones obtained by the
6CART experiment, which is driven by physical knowledge
of the problem. It is worth noting that, in this problem, the se-
lected features by the method (Fig. 2, bottom row) are essen-
tially the six most important spectral bands identified in [1].
Along them, some other features of interest are selected (49
and 86 − 88). This fact not only confirms the correctness of
the proposed model selection, but also (and even more impor-
tantly) offers a way to obtain trustable insight on the model.

5. CONCLUSION

This paper proposed multiple kernel learning to learn the rel-
evant features of remote sensing images for automatic image
classification. Noting the high computational cost involved,
we have introduced an efficient model selection procedure
based on the alignment with the ideal kernel. Excellent classi-
fication results were observed in both multi and hyperspectral
images. Additionally, the model returns automatically a rank
of the most relevant features and hence the most important
physical signal characteristics are discovered.
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