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ABSTRACT
Ratio filters for speckle noise reduction in SAR imagery are

recursive filters where the image structure is iteratively recov-

ered from an initial oversmoothed image. We show that the

MBPolSAR filter could be interepreted as a ratio filter applied

to the off-diagonal terms of the covariance/coherency matix.

From this observation, we propose a new polarimetric ratio

filter allowing us to recover the image structure from all the

terms of the covariance matrix. In addition, we briefly look

at how the additive noise component could also be exploited

for the image structure extraction. Filtering results on both

simulated and real PolSAR images are shown.

Index Terms— PolSAR, Speckle, Filtering, Wavelet

1. INTRODUCTION

SAR Polarimetry (PolSAR) has been demonstrated to be an

important diversity source for the extraction of bio- and geo-

physical parameters to characterize the Earth’s surface. The

sensitivity of PolSAR data to the geometry of the observed

targets, together with the sensitivity to different electromag-

netic properties, specially permittivity, makes this type of data

valuable for thematic classification and for the quantitative

extraction of surface parameters such as humidity or rough-

ness. Nevertheless, and due to the coherent nature of SAR

systems, PolSAR data are affected by speckle. Under the hy-

pothesis of Gaussian scattering, valid for stationary data, the

most important radar observables for PolSAR data are the co-

variance or the coherency matrices, that need to be estimated

from data in order to reduce, or even to eliminate, the speckle

effects.

PolSAR speckle noise filtering is still today an unsolved

and challenging problem for the operational use of PolSAR

data for both, qualitative and quantitative applications [1].

PolSAR filtering algorithms must adapt to different properties

of the signal in order to avoid the loss information. First of
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all, PolSAR filtering needs to adapt to the nature of the targets

being observed, that is, point or distributed scatterers. Basi-

cally, this necessity represents the need to maintain the spatial

resolution and the spatial details, as addressed in [2,3]. Addi-

tionally, PolSAR speckle filters must also adapt to the nature

of the PolSAR data being filtered, as proved in [4].

The adaptability to the data morphology is obtained

through a detailed analysis of the neighboring region of

the pixel being processed. Some examples in the literature

are [2,3]. The second level of adaptability is obtained through

an exploitation of the data probability density function (pdf).

In the case of PolSAR data being distributed according to

the zero-mean, complex Gaussian pdf, it was shown that

speckle noise results from the combination of multiplicative

and additive noise sources [5].

The objective of the work detailed in this paper is twofold.

The first part addresses an in-depth exploitation of the

multiplicative-additive speckle noise model for PolSAR data.

As it has been shown in different contributions, the filtering

process of the different noise sources suffers from several

inconsistencies due to a insufficient accuracy of the proposed

PolSAR speckle noise model to describe the data or due to

an insufficient adaptability to the data morphology. In order

to reduce these drawbacks, an iterative scheme reprocessing

the multiplicative, as well as the additive noise components,

is considered in order to retrieve data details that should not

have been removed from the original signal. In addition,

the filtering of the speckle noise components is performed

through a Wavelet scheme in order to recover the image

structure and maintain the spatial resolution.

2. POLSAR DATA FILTERING

2.1. The Ratio Filter for Single Band SAR Images

The Ratio filter for the filtering of single polarization SAR im-

ages has been proposed by Bijaoui et al. [6]. This approach

directly exploits the multiplicative nature of speckle noise on

power images in order to iteratively refine the estimation of

the image structure. The method is shown on Algorithm 1.

First, a coarse filtering of the image is performed by a Low-
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Pass filter (LP). Then, the image ratio between the original

image and the denoised image is formed. Since the denoised

images has lost most of the image details such as point target,

edges, etc., the details will show up in the ratio image within

the background noise, i.e., speckle. A similar approach to

study the noise signal obtained after filtering has been pro-

posed in [7]. In [6] the recovery of the image details is per-

formed with the help of a wavelet transform. This process is

iterated until no changes are observed in the filtered image.

Algorithm 1 Ratio Filter, Output: filtered SAR image

Require: SAR image I
1: I(0) ⇐ LP (I)
2: repeat
3: n ⇐ I/I(k)

4: n̂ ⇐ Filter(n)
5: I(k+1) ⇐ n̂× I(k)

6: k ⇐ k + 1
7: until ||I(k+1) − I(k)|| < ε

2.2. The MBPolSAR Filter

The polarimetric noise model established by López-Martínez

and Fabregas [5] leads to the following decomposition for the

covariance matrix Z under the hypothesis of PolSAR data be-

ing characterized by the zero-mean, complex Gaussian pdf

Z = C+Nm +Na. (1)

In particular, all the elements of the covariance matrix

may be expressed according to

SpS
H
q = ψ |ρ| ejφx +ψz̄nNc(nm− 1)ejφx +ψ(nar + jnai).

(2)

Two noise terms are present, which final contribution is deter-

mined basically by the complex coherence value ρ = |ρ|ejφx .

Strong coherence values will imply that the multiplicative

noise, nm will be dominant, whereas low coherence val-

ues will see the complex additive noise nar + jnai prevail.

The polarimetric phase determines also the contribution of

the multiplicative speckle noise component to the real and

imaginary parts of the filtered Hermitian product, in such a

way that even in high coherence cases, the additive speckle

noise component may dominate. According the the previous

PolSAR speckle noise model, the MBPolSAR filter [4], de-

scribed on Algorithm 2, was developed and validated. The

approach presented in [4] took into account the filtering of

the multiplicative and the additive speckle noise component.

Basically, and as indicated on Algorithm 2, the algorithm

reduces first the additive speckle noise component by synthe-

sizing the first additive term of (2) and then, in an iterative

way, removes the multiplicative speckle noise component.

It is worth to notice that the original implementation of

this filter did not include any adaptation to the image mor-

phology. In the next section, it shall be shown that the MBPol-

Algorithm 2 MBPolSAR

Require: z = |SpS
∗
q |p �=q , complex correlation ρ, ψ

1: k ⇐ 0
2: ρ(0) ⇐ ρ
3: repeat
4: B ⇐ ρ(k)

z̄n
= |ρ|

Nc
π
4 2F1(− 1

2 ,− 1
2 ;1;|ρ|2)

5: C
(k+1)
pq ⇐ E [z]B

6: ρ(k+1) ⇐ min
(
max

(
|C(k+1)

pq |/ψ, 1
)
, ε
)
ej∠C(k+1)

pq

7: k ⇐ k + 1
8: until k = Niter

SAR filter may be understood as an extension of the ratio fil-

ter.

2.3. Extension of the Ratio Filter to PolSAR Data

The averaging operator of line 5 on Algorithm 2 may be

rewritten as follows

Ĉpq = E[z]B = E[nm]ψρ (3)

where nm is a stationary multiplicative speckle noise compo-

nent, that is, E[nm] = 1, var[nm] = 1 for single look images.

The previous expression may be seen as an iterative scheme

similar to line 5 in the ratio filter

Ĉ(k+1)
pq = E[n(k)

m ]Ĉ(k)
pq . (4)

Therefore, the filtering process of the multiplicative speckle

noise component may be performed through a direct exten-

sion of the ratio filter, see Algorithm 1, to the off-diagonal el-

ements of the covariance matrix by simply replacing the line

5 by equation (4) above. In addition, it is also important to

recover the image structure eventually while smoothing the

speckle noise, since as indicated, this was not the purpose

of the original implementation of the MBPolInSAR filter. In

order to improve this original implementation, different filter-

ing strategies may be addressed. In the ratio filter a wavelet

approach was considered, where a simple threshold of the

wavelet coefficients was applied [6]. In [9], an entropy based

threshold was also proposed. Here, weighting functions Wpq

are computed for each wavelet band of level l based on a lo-

cal Wiener filter w = max
(
( ˆvar[l] − S

[l]
2 )/ ˆvar[l], 0

)
, where

ˆvar[l] is the local wavelet coefficient variance and S
[l]
2 is the

equivalent power gain similar to [1]. However, in order to

preserve the polarimetric information, the same amount of fil-

tering must be applied when filtering all the elements of the

sample covariance matrix [4]. In order to achieve this, we

compute an average function W = 1
6

∑
p,q W

(k)
pq represent-

ing the image structures to be recovered. Noise components

n
(k)
pq are then filtered using this function producing residual

signals n̂
(k)
pq . In order to preserve the covariance matrix cor-

relation structure, we apply the filtering correction step using
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the average correction signal 1
6

∑
p,q n̂

(k)
pq on all the polari-

metric channels. The algorithm overview is shown on the Al-

gorithm 3 below.

Algorithm 3 Polarimetric Ratio Filter

Require: rank-1 covariance matrix z = |SpS
∗
q |, initial mul-

tilook estimate ĈMLT and ρ̂MLT

1: k ⇐ 0
2: C(0) ⇐ ĈMLT

3: ρ(0) ⇐ ρ̂MLT

4: repeat
5: Estimate noise components:
6: n

(k)
pp ⇐ z

C
(k)
pp

, p ∈ {hh, hv, vv}
7: n

(k)
pq ⇐ z

ψz̄n
, p, q ∈ {hh, hv, vv}, p �= q

8: Estimate wavelet weighting functions:
9: W

(k)
pq ⇐ StructureDetection[n

(k)
pq ]

10: W (k) ⇐ 1
6

∑
p,q W

(k)
pq

11: Apply filtering:
12: n̂

(k)
pq ⇐ Filter[n

(k)
pq |W (k)], p, q ∈ {hh, hv, vv}

13: n̂(k) ⇐ 1
6

∑
p,q n̂

(k)
pq

14: C
(k+1)
pq ⇐ n̂(k) × Filter[ρ̂

(k)
pq |W (k)]× ψ(k)

15: ρ(k+1) ⇐ min
(
max

(
|C(k+1)

pq |/ψ(k+1), 1
)
, ε
)
ej∠C(k+1)

pq

16: k ⇐ k + 1
17: until k = Niter

2.4. A Look at the Additive Noise Component

The additive component in Equation (2) is a zero noise com-

plex noise with a variance dependent on the coherence value

σ2
nar

= σ2
nai

= 1
2 (1− |ρ|2)1.32 [5]. Consequently, exploiting

this signal for extracting the image structure is much more

challenging and will depend also on the phase signal. The

residual noise once the multiplicative noise is removed is the

following

a = na + |ρ| ejφx =
SpS

H
q − ψz̄nNc(nm − 1)ejφx

ψ
. (5)

Theoretically, we should be able to estimate the polarimetric

signal from the mean E{a} = |ρ| ejφx . The computation of

the weight functions need to be modified in order to take into

account the non-stationary noise

w = max

(
ˆvar[l] − S

[l]
2 σ̂2

a

ˆvar[l]
, 0

)
(6)

where σ̂2
a = 1

2 (1− |ρ̂|2)1.32.

3. RESULTS AND EVALUATION

A simple simulated single-look PolSAR image showing a step

edge with two different scattering classes, that in this case

correspond to low entropy (H/A/ᾱ = 0.22/0.44/51deg)

and high entropy (H/A/ᾱ = 0.92/0.12/53.8deg). The pro-

posed filter is applied considering 5 iterations. A Stationary

Wavelet Transform (SWT) with 3 levels and a short symmet-

ric biorthogonal wavelet is used as the Filter function. The

filtering result is shown on Figure 1.

Fig. 1. Original PolSAR image (left) and filtering re-

sult with 5 iterations (right). Pauli color coding (HH-

VV,HV,HH+VV).

Fig. 2. Coherence values for the simulated image (Figure 1)

with asymptotic values (dotted lines), estimates from Algo-

rithm 2 (orange line) and from Algorithm 3 (thick red line) as

a function of the iteration. Iteration 0 is the original multilook

value (7× 7).

As it can be sees on Figure 1, the proposed filter results

into a good preservation of local details corresponding to the

line separation between both scattering classes. The main-

tenance of the polarimetric information is presented in Fig-

ure 2, where we can observe that the actual coherence values

are correctly retrieved. As the filter considers specifically the

additive part of speckle, improved estimations of low coher-

ence are obtained. For comparison, we present also the co-

herence values retrieved by the Algorithm 3, where it may be
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observed that a larger bias reduction is obtained for low co-

herence values mainly because mixture between polarimetric

signatures along the boundary was mitigated. For the pro-

posed method, the relative bias in % of the asymptotic value is

(H/A/ᾱ) = (0.9/−22.1/−4.1)% for the high entropy target

and (H/A/ᾱ) = (−2.1/−0.7/−0.1)% for the other one. For

the boxcar 7×7, we get (H/A/ᾱ) = (2.4/−60.0/−12.2)%
for the high entropy target and (H/A/ᾱ) = (0.0/ − 3.7/ −
0.2)% respectively.

In order to study the performances of the proposed filter-

ing approach, it is also applied to an L-band, 400× 400-pixel

E-SAR image in the area of Oberpfaffenhofen near Munich,

Germany. These data present a spatial resolution of 3m×3m,

see Figure 3. This image presents strong point targets which

can create strong artefacts with the wavelet transform. There-

fore, we first form a mask of strong targets by thresholding

the span image above the 98th percentile value. Correspond-

ing values in the PolSAR image are then replaced by low span

values in the immediate vicinity of the target before filtering.

The Cloude-Pottier parameters are shown on Figure 4 where

we can observed that the polarimetric information si some-

what to the multilook filter.

4. DISCUSSION AND CONCLUSIONS

We proposed a new approach for PolSAR image filtering that

combines the iterative approach of the MBPolSAR filter and

the Ratio filter. Significant image structures are progressively

extracted from the noise images based on a wavelet transform.

One advantage of the method is that it exploits information

from all the terms of the covariance matrix. In addition, we

keep the iterative improvement of the coherence value esti-

mates that is observed with the original MBPolSAR filter.

Many improvements are possible, in particular in the way we

extract the image structure and the way we merge individual

weighting functions. Also, establishing a good strategy for

the preservation of strong point targets is still an open issue

with this kind of approach.

Fig. 3. Original PolSAR image (left) and filtering result with

5 iterations (right). (HH-VV,HV,HH+VV).

Fig. 4. Cloude-Pottier parameters for the 7x7 boxcar filter

(top row) and with the proposed method (bottom row).
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