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ABSTRACT

The study of the collective effects of radar scattering from

an aggregation of discrete scatterers randomly distributed in

a space is important for better understanding the origin of

the backscatter from spatially extended geophysical targets

(SEGT). We consider the microstructure irregularities of a

SEGT as the essential factor that affect radar backscatter. To

evaluate their contribution this study uses the "slice"

approach: particles close to the front of incident radar wave

are considered to reflect incident electromagnetic wave

coherently. The radar equation for a SEGT is derived. The

equation includes contributions to the total backscatter from

correlated small-scale fluctuations of the slice's reflectivity.

The correlation contribution changes in accordance with an

earlier proposed idea by Smith (1964) based on physical

consideration. The slice approach applied allows
parameterizing the features of the SEGT's i nhomoge nei ties.

Index Terms— Remote sensing, radar scattering

1. INTRODUCTION

The study of the collective effects of radar scattering from

an aggregation of discrete scatterers randomly distributed in

a space is important for better understanding the origin of

the backscatter deviations from the theoretical models (e.g.,

[ 1, 2]). In the current paper we analyze a mechanism which

can cause the backscatter to deviate from the classical

(incoherent) estimate because of the collective effects in

spatially extended geophysical targets (SEGT). Description

of this mechanism is based on so-called "slice" approach

firstly suggested for the meteorological SEGT (clouds, rain)

in [3, 4], and enhanced by the author [5] for general SEGT

(including thick snow cover), taking into account the

statistics of its scattering properties. The approach exploits

the partial coherence of the backscatter electric field from

particles located close to the wavefront of the incident radar

irradiance within a radial distance (Aj that is much less than

the radar wavelength (X). This fictitious thin volume is a

"slice", Fig. 1.
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Fig.]. Simplified slice approach scheme. An arbitrary

position of a single slice is shown. The scattering volume is

shaded

The corresponded radar equation contains parameters that

parameterize the irregularities of the SEGT's microstructure.

Here we extend that parameterization with a correlative

factor that describes the correlation between slices'

reflectivity and, in particular, interprets an increase or

decrease in the backscatter compared to the expected one for

some cases.

2. RADAR CROSS SECTION OF THE SEGT IN A
"SLICE" APPROACH

The mean radar cross section (MRCS) of the volume'

component of the backscatter from SEGT under assumption

of single scattering by individual particles has the follow

general form:

(a,

= 1 1	 ^2)

jai exp(— j2k4,

1=1

where a _= N Fcr is the "Particle Radar Equivalent Length"

(PREL), a is the random RCS of an individual particle, N is

the total number of particles within the scattering volume,

k = 2)a-' is the wavenumber of the incidence radar



irradiance of the wavelength.L Under a "slice" approach the

instantaneous sum of PRELS of particles located close to the

wavefront at the qth position and within the slice radial size

A,<< k can be represented as:

I

(q)a exp(i2kdi(e) )=bexp(—j2kdJ	 (2)
iEJqJ

where b q	 Y a ,,	 is the "Slice Radar
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Equivalent Length" (SREL) which is the sum of all PRELs

within a slice; n,, is a random number of particles inside a

slice, and dq=qA, is a distance of qth slice from the border of

the scattering volume nearest to the radar. Thus, the

backscattering feature of the radar scattering volume can be

represented as the series of M = H /A, >> I adjoining

"pulses" (slices) with random amplitude (b):

M	
^2)

(a,)= Jb,,exp(—j2kqA

Y	 =

(lq=l	

(3)

H12	
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A, 
fb(x)exp(— j2kx)dx

_H12

The spatial distribution of the SREL along the radial

direction b(x) within the scattering volume can be

represented as a sum of a quasi-regular component bo(x) and
a small-scale (compared with the wavelength) fluctuating

component bAx) [6]:

b(x) = b(, (x) + b, (x)	 (4)

If assume thp t the process b(x) is stationary,12

i.e.,(b,(x))=O, fbJx)exp(—j2kx)dx~0 ,	 and
- lyi

Var(b)=const, it is possible to show [5] that MRCS can be

expressed through the normalized correlation function R(^)

of the fluctuating component of SREL:
/2- H

Var(b) 
2fl/ 

A, 
f dx fdy - R(x — y)exp[— j2k(x — y)] (5)

_H1 -H

where	 Var(b) Var(a) - (n) + (a) 2 • Var(n)	 is the

variation of SREL, expressing through the statistics of PREL

and particle number within a slice basing on the known

theorem about the variance of a sum of a variable number of

variable values [7].

In the case of uncorrelated fluctuations of SREL, i.e., when

	

R(x — 
y) = 1, X — .v =0	 (6)

^0,x—y#0

it was shown by the author [5] that the MRCS is equal to:

(tyl: ) = 
(cr, 	 devF( ,, , X)	 (7)

where (a, )	 is the MRCS in the "classical" (incoherent)
ous

approach-, and

+XdevF(^.,	 +I

is the deviation factor, governed by the Poisson index

(n is a random number of particles within a
(n)

slice),	 and	 by	 the	 variation	 coefficient	 of

PREL^^ = 
Stdev(a)

(a) . If the fluctuations of particle number

is pertaining to the Poisson law when then for any ^,,

the deviation factor devF=I, and a classical result of
incoherent approach takes place. The PREL variation

coefficient (s,,) can be expressed through the parameters of

the particle size distribution function (PSDF) [5]:

_1v V^,. ' + 2A

' + 3C^,- ' + A

where	
Stdev(r) 

is the particle size variation
r)

coefficient, and Sk is the skewness coefficient.

Although the deviation factor (8) describes the plus/minus

deviations of the MRCS from the classical one, there is also

one more additional slice's statistics that can contributes in

the backscatter as well.

3. MEAN RCS TAKING INTO ACCOUNT THE
CORRELATION BETWEEN SLICE SCATTERING

PROPERTIES

In a general case the SRELs can be correlated due to finite

b-disturbances spectrum with inner (/()) and outer (L O) scales.

The slice size is assumed to be equal to the minimal scale of

SREL's fluctuations 1() (if 10 < X). In this case equation (5)

can be written in the form,

(a, 
Var(b) 

H 
"/' 

dA(I—LA1^(A)exp(—j2kA) (10)
A5,	 f	 H

HI2

If assume that the correlation interval is much less than the

radial size of the scattering volume, (10) can be reduced to:

A2 
H fdAR(A)exp(—i2kA)=

_ l

= M - Var(b) - corrF

where corrF	 F (K),=,, is the correlative factor of the

normalized spectral function F(,v). Since

2M - Var(b) = M (n)(a )2 (,  
I

N(a) '_ - devF Sou + 1) = (' devF

the equation (11) can be represented in the form:

(ay ) =	 - devF - corrF	 (12)

Spectral function for process (3) is [8]:



F(	

^, q^-

,v)=,^(j,^J ic,A, JR(qAJexp(jkqAJ (13)
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where 1 , (7r, A, ) is the normalized spectral function of the

typical "pulse" of SREL.

Assuming the radial distribution of SREL within the

scattering volume as a consequence of adjoining rectangular

"pulses" of width A, with the exponential correlation

function R(A)=exp(_1A.A:-,,1J), the following expression can

be derived for the correlative factor:

sin(kA,)	
1— exp 2 

A,	
(14)

 ^
C0rrF —_ I	

A,

kA,
I — 2exp^ — 

A 0

 Cos (2kA , ) + exp^— 2
A,
 
A,

The plot of (14) is depicted in Fig.2 for different ratios of

(A,/A,,, ).
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Fig.2. Correlative factor versus relative correlation radius

(A(JAJ for different slice sizes.

As follows from this plot the correlative factor for thin slices

(A,<Y16) and a small correlation radius arises because of

the small differences in the distance between slices, which

cause a constructive interference. Since in the case of

=	 (v is the kinematicatmospheric turbulence, A, =1c)

viscosity of air, and e is the energy dissipation per unit of

mass), this case corresponds to the moderate and high

turbulence. The upper curve is only a theoretical limit that

never can be reached in practice because it relates to the

infinitesimal scales of fluctuations, which cannot be less than

the inner scale (1()) of SREL's disturbance.

Subsequent increases in the correlation interval causes the

contribution of the destructive interference, which makes the

backscatter decrease. P.L. Smith [4] predicted qualitatively

this behavior based on the interference theory. With a slice

size of —.V8 suggested in [61 (low turbulence), the correlative

factor slows monotonously beginning at 0 dB; Corrf-­­ 10

dB at A,, = A, for example. This value is close to the

observable deviation of the backscatter from the atmospheric

fog [6]. The arising feature of the correlative factor together

with the probably high value of the Poisson index [91 can be

applied for interpretation of the experimental data obtained

during the radar probing of clouds accompanied with

simultaneous measurements of the particle size spectra in

situ [10]. In this experiment, the estimations of radar

reflectivity based on the standard weather equation were

found notably higher than expected values calculated

according to the spectrometer data.

4. CONCLUDING REMARKS

The radar backscatter features have been considered within

the frames of the slice approach taking into account the

correlation between slice radar equivalent lengths. The

correlation contribution has been evaluated based on the

derived correlative factor. In particular, for a random

scattering medium with correlation radius less than the

wavelength this factor describes the backscatter changes in

accordance with an earlier proposed idea based on physical

consideration 141. The slice approach allows interpreting the

variety of radar backscatter deviations from the classical

model based on the inventory of contribution of the

statistical features of the fine-scale microstructural
fluctuations. The statistics of a slice radar equivalent length

(SREL), commonly unknown for spatially extended

geophysical targets (SEGT), should be investigated in future
researches. The correlative factor obtained together with the

deviation factor [5] parameterizes the "rate of
inhomogeneity" of a SEGT. The "classical" result (the total
RCS is a sum of the RCSs of individual particles) takes

place upon 2 conditions: (1) the fluctuations of particle
number at small-scale should be pertaining to the Poisson

law, and (2) SREL fluctuations should be not correlated.

The assessment of these factors and conditions inherent to

different kinds of a SEGT will improve the accuracy and
reliability of the radar remote sensing.
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Abstract: I he studyy o . the collective effects  o ra r scattermgg om an aggregation odiscrete scatterers randomly distributed in a space is important for better understanding the origin of the backscatter
eve^iations from spatially extended geophysical targets (SEG[). We consider the microstructure irregularities of a SEGT as the essential factor that affect radar backscatter. To evaluate their contribution

this study uses the "slice" approach: particles close tothe front of incident radar wave are considered to be approximately at the same distance from the radar. Therefore, these particles reflect incident
electromagnetic wave coherently. Each slice is much narrower than the radar wavelength in the wave propagation direction. The radar equation for a SECT, which is based on the slice model of
backscatter volume, is derived. The equation includes contributions to the total backscatter from correlated small-scale fluctuations of the slice's reflectivity. The average power of an echo signal is
proportional to the sixth moment ofthe particles' size distribution function (classical case), only for the case of Poisson fluctuations of particle concentration within the slices and uncorrelated small-scale
reflectivity fluctuations within a backscatter volume. The correlation contribution changes in accordance with an earlier proposed idea by Smith (1964) based on physical consideration, The slice approach
applied allows parameterizing the features of the SEGT°s inhomogeneities.
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