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ABSTRACT 
 
Measuring the long-term line-of-sight deformation using a multi-
pass SAR data stack by standard persistent scatterer technique has 
been explored since the late 1990s. Researches have been 
continuously conducted on increasing the data coverage at non-PS-
rich areas. The recently developed SqueeSARTM technique has 
validated the potential of extracting useful information from 
distributed scatterers. With the availability of high resolution 
TerraSAR-X spotlight data, this technique can benefit greatly from 
its higher data density and quality. 

This article presents an algorithm of parameter estimation at 
distributed scatterers by maximum likelihood estimator in high 
resolution TS-X spotlight data. Different to SqueeSARTM, this 
article pays particular attention to the accurate covariance matrix 
estimation for phase history retrieval on each individual distributed 
scatterer. Solutions are presented for adaptive sample selection by 
a different statistical test (Anderson-Darling). An adaptive multi-
resolution defringe algorithm is introduced to cope with the 
problem of accurate fringe removal and in turn accurate covariance 
matrix estimation. And finally maximum likelihood estimator was 
employed to estimate the model parameters by weighting each 
measurement according to its coherence. By combining both the 
persistent scatterers and distributed scatterers, the increase in the 
capable monitoring area is phenomenal. 
 

Index Terms— Interferometric SAR, distributed scatterers, 
covariance matrix, phase history 
 

1. INTRODUCTION 
 
The new generation of space-borne SAR systems, like TerraSAR-
X (TS-X), provides higher resolution, shorter revisit time, and 
better orbit control, which opens a new attitude to look at the 
distributed scatterers (DS), and enables the usage of them. The 
absence of such systems before concedes the research to mainly 
focus on persistent scatterer (PS). The standard PS technique is 
essentially a model fitting problem by maximizing the unweighted 
sum of the residual phase between the model and the 
measurements (ensemble coherence maximization [1]). PS ensures  
the quality of the measurements, and therefore weighting is not 
absolutely necessary.  
 
In the case of DS, they are assumed to be independent circular 
Gaussian random variates [2]. Maximum Likelihood Estimator 
(MLE) was developed to estimate the interferogram phase [3]. But 

problem arises at the reliability of the covariance matrix due to the 
longer revisit time in the old time SAR system causing strong 
decorrelation of the target. Most of the studies were presented with 
simulated data. Subsequent research has been done on the 
decorrelation models and improvement on the MLE [4]. The 
recently developed SqueeSARTM technique [5] presented a method 
to extract information from the DS by making use of an adaptive 
sample selection strategy which applies a statistical test on each 
pixel to correctly select samples and accurately estimate the 
covariance matrix. Specific research was then started on the 
characteristics of different statistical tests [6].  
 

2. MAXIMUM LIKELIHOOD ESTIMATOR 
 
According to [4], the likelihood function to be maximized is 
expressed as follows: 
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where   
i: vector of measurements 
Φ: diagonal matrix containing the phase of the model 
C0: absolute value of the covariance matrix 
h, v: digital elevation model (DEM) error, line-of-sight (LOS) 

displacement velocity 
N : number of images 
 
The phase of the covariance matrix resembles the interferogram of 
all the possible combinations of any two acquisitions. And its 
absolute values represent the correlation between any two 
acquisitions. The 1

0
−C  matrix in the MLE applies weighting on 

each measurement. Therefore, the correctness of the covariance 
plays an important role on the MLE. 
 

3. COVARIANCE MATRIX ESTIMATION 
 
The covariance between two acquisitions n and k is estimated by 
taking the mean value of M nearby samples.  
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According to Reed-Mallett-Brennan detection loss theory, the 
number M is usually large than 2N, in order to maintain a loss of 
the likelihood (shown in Eq. (1)) of less than 3dB. The loss of the 
likelihood is concluded in [7] as: 

mailto:wang@bv.tum.com


   
                    (a)                                                     (b) 

 
 

 

20 40

10

20

30

40

0

0.5

1

 

 

   
 

 

 

 

20 40

10

20

30

40

0

0.5

1

 
                    (c)                                                     (d) 
Figure 1 (a) and (b): samples selected by adaptive and rectangle 
sample selection strategy. The red dot in the figure is the target 
pixel, while those in blue are the selected pixels. (c) and (d): the 

coresponding covariance matrixes. 

 ( ) ( )1010log M+2-N M+1loss  = −    (3) 

In practice, we found M equal to 3N is still a manageable number. 
 
The typical way of choosing these M samples is to take a rectangle 
patch. This brings the risk to average the pixels from different 
distributions, yielding a wrong estimation of the covariance matrix. 
A second issue is that the spatially varying fringes caused by 
topography and deformation lead to an underestimation of the 
covariance. To cope with these problems, adaptive sample 
selection, and a multi-resolution defringe algorithm is introduced 
in the following two sections. 
 
3.1. Adaptive Sample Selection 
 
The hypothesis of statistically homogenous samples is not always 
valid, especially under large number of samples and at boundaries 
of objects with different scattering mechanisms (e.g. trees, 
buildings). The adaptive sample selection strategy ensures the 
validity of the hypothesis by performing an intensity-based 
statistical test on the samples selection. The size and the shape of 
the selected sample patch can vary from pixel to pixel. 
 
The SqueeSARTM technique makes use of the Kolmogorov-
Smirnov (K-S) test [5]. It is a simple and non-parametric test which 
measures the maximum distance between the cumulative 
distribution functions (CDF) of two sets of data. Different tests, 
such as Kullback-Leibler Divergence, Likelihood Ratio, and 
Anderson-Darling (A-D) test were evaluated in [6]. The A-D test 
was proven to provide the best performance. Different to the K-S 
test, it takes into account the weighted L2-norm of the difference 
between two CDFs. 
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where , ( )n kF x  is the CDF of the combined data set {n, k}. The A-
D test outperforms the K-S thanks to its weighting at the tail of the 
difference between two CDFs, instead of considering only the 
maximum difference. This feature enables the A-D test to 
distinguish the difference between two CDFs with fluctuations of 
higher order [6]. 
 
The adaptive sample selection algorithm (with A-D test) and the 
typical rectangle method were applied on a common test site from 
a stack of 49 TS-X images at downtown Las Vegas. Fig. 1 
compares the difference between their averaging windows, and the 
resulting coherence matrixes. The coherence matrices show 
dramatic difference. Decorrelation patterns can be clearly observed 
on the left (adaptive window), while the right one (rectangular 
window) shows generally a very high coherence (>0.7), which 
overestimates the covariance matrix. It is caused by the presence of 
a number of persistent scatterers in the rectangle which happens 
very likely in urban areas.  
 
3.2. Adaptive Multi-Resolution Defringe 
 
Defringe, also known as phase flattening, is a necessary step to 
compensate the topographic phase before the covariance (or 
coherence) estimation. Otherwise the covariance can be 
underestimated due to the summing of spatially varying phase. 
Eq.(2) is then modified as follows: 
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where ( )n mφ  is the estimated topographic phase of sample m in 
image n. 
 
The typical defringe method is first to divide the interferogram into 
relative small patches under the assumption of a constant fringe 
frequency within the patch, and then to estimate the local fringe 
frequency by Fourier transform. However, this brings two major 
drawbacks: (1) the assumption of a constant frequency is not 
always fulfilled, especially at areas with fast varying topography, 
and (2) the local fringe frequency cannot be correctly estimated at 
areas where decorrelated noise dominant. 
 
The proposed adaptive multi-resolution defringe algorithm 
overcomes these two problems by one hand removing the fringe 
with degressive size of local patches iteratively, and the other hand 
taking into account only the distributed scatterers sharing the same 
distribution function within a local patch. The multi-resolution 
feature allows it to resolve higher orders of fringe frequencies, and 
perform fine correction at each resolution level. The adaptive 
feature filters out the noise which overwrites the true local fringe 
spectrum. 
 
To validate the multi-resolution defringe algorithm, it went 
through a test on a simulated interferogram of which certain 
percentage of the pixels is defined as DSs, and the rest as 
decorrelated noise. Circular Gaussian noises are added 
accordingly. The reference phase (ground truth) and simulated 
measurements are collocated in Fig. 2. Fig. 3 lists the input and 
estimated phase of each resolution level. The figure illustrates the 
multi-resolution strategy. Fringes within patches of sizes 100*100, 
50*50 25*25, and 15*15 have been removed progressively. The 
highest resolution level (15*15) was carefully chosen, because 
estimation error will emerge if the patch size is too small to 
accommodate sufficient number of DSs. Conclusion can be drawn 
that (1) the minimum patch size has to be chosen accordingly and 
depends on the number of distributed scatterers available in the 



 
                           (a)                              (b) 
Figure. 2 (a) simulated true phase, (b) simulated measurements, 
generated by adding different level of noise to pre-defined DS 

and noise pixels. 

Box 100*100     Box 50*50     Box 25*25     Box 10*10

 

                

 
Figure. 3 Estimated fringe at each resolution level. The first row 

is the residual phase before each resolution level. The second row 
shows the estimated phase. 

 

 
            (a)     (b)           (c) 
Figure. 4 (a) true fringe, (b) fringe estimated by Adaptive Multi-
resolution, and (c) fringe estimated by typical rectangle method 
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Figure. 5 Correlation coefficient of the estimated phase by 

adapative multi-resolution and typical rectangle method with the 
true phase at different percentage of DS density in the scene. 
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Figure. 6 Phase history of a DS. This DS shows no displacement 

with linear rate. Phase is converted to mm. 

interferogram and also their coherence, and (2) patch sizes of 
different resolutions should be avoided to be integer multiples. 
 
This algorithm was validated by comparing it to the typical 
defringe method. Both of them were applied to the same simulated 
interferogram used in the previous section. The findings are 
demonstrated in Fig. 4. The difference can be clearly observed 

between (b) and (c) that the proposed algorithm reduces the 
estimation error tremendously, and meanwhile, the fringe estimated 
by the proposed algorithm retains higher correlation with the truth 
than the typical method throughout a wide range of percentage of 
DS available in the scene, as presented in Fig. 5. 
 
Fig. 5 also tells that the performances of the two algorithms are 
equivalent at situations of very high DS concentration. Both of the 
curves show a decreasing trend along with the decreasing 
percentage of the DS percentage in the scene. The number of DS is 
proven to be a critical criterion for both algorithms. Yet advantage 
of the proposed method is that it makes the best use of the 
information carried in the DSs.  
 
3.3. Phase History Retrieval 
 
The phase history can be retrieved from the correctly estimated 
covariance matrix. The phases of the first column of the covariance 
matrix represent the expectation value of the interferometric phase 
referring to the first image. This is identical to multi-looking the 
selected samples. Fig. 6 plots the phase history of a target DS (the 
red pixel in Fig. 1). This DS shows no deformation throughout the 
2 years’ time span.  
 

4. ALGORITHM TESTING 
 
In this section, the proposed algorithm was applied to a test site 
from a stack of 49 TS-X images at downtown Las Vegas. Fig. 7 
shows the mean intensity of the radar return and optical image with 
3D model from Google Earth. Pixels are firstly classified according 
to the “number of brother pixels” (pixels sharing the same 
distribution) of each pixel and a coarse coherence estimation 
(without defringe). The proposed algorithm is then performed on 
the DSs.  
 
4.1. Pixel Classification 
 
It is believed that most of the PSs are encompassed by very few 
numbers of similar pixels which share the same distribution [5], 
while most of the DSs will possess a great number of such 
“brother” pixels. Experiment is conducted on the test data. All the 
pixels in the test scene undergo the A-D test. The findings, in Fig. 
8(a), tells that 95% of the PSs possess less than 6 brother pixels. 
But the numbers of brother pixels for the distributed scatterers are 
well over the required number of looks (in our case L = 3N ≈ 150). 
The pixels in blue are mostly building corners, facades, and the 
tower. They are most likely PSs. The orange pixels are dominated 
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Figure. 8 (a) Number of “Brother Pixels”. The colorbar 
represents the number, (b) Pixel Classification Map. The cyan 

pixels indicate the PS, the yellow the DS, and the black the 
unclassfied. 

 

 

 

 

 

 

                  
                        (a)                        (b) 

Figure. 7 (a) Mean intensity of the test site, (b) optical image 
with 3D model of the building from Google Earth 
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Figure 9 (a) Estimated elevation at PSs, (b) Estimated elevation 

at PSs and DSs. The eleveation is in meters and color coded. 

 

 

 

 

 

 

 

by surface of the lake, and the roads between the buildings. Here 
we make use a coarse coherence estimation to distinguish DS and 
decorrelated noise. The final classification map is shown in Fig. 
8(b). 
 
4.3. Estimated Parameter 
 
Fig.9 shows the estimated elevation of PSs (by standard PS 
technique), and DSs (by the proposed algorithm). An increase in 
the information coverage over the city can be observed. The 
increment can be more significant in case of rural and mountainous 
region where DSs are widely distributed. 
 

5. CONCLUSION 
 

This article presents the first demonstration of parameter 
estimation by MLE at distributed scatterers using very high 
resolution TS-X spotlight data. Particular focus is put on the 
critical problem of accurate covariance matrix estimation. The 
proposed algorithm introduces an adaptive sample selection and 
multi-resolution defringe methods to cope with this issue. The 
adaptive sample selection method is proven to be an essential 
procedure in the covariance matrix estimation. The A-D test 

performs well in distinguishing targets of different scattering 
characteristics. The proposed adaptive multi-resolution defringe 
algorithm outperforms the typical method over a wide range of DS 
densities. Through the experiment of all the procedures of the 
proposed algorithm, this paper also provides a simple way of pixel 
classification by A-D statistical test and coarse coherence 
estimation for high resolution TS-X data. 
 
The findings reveal its potential at places rich of distributed 
scatterers, such as rural areas and volcanoes. Applications such as 
natural hazard monitoring are of great attraction. It is also 
interesting to investigate the capability of MLE under the condition 
of small number of acquisitions. 
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