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ABSTRACT

This paper discusses cross-track SAR interferometry under
crossing orbits. The underlaying theory is briefly outlined,
showing that a crossing angle between the ground tracks
needs to be compensated by applying different squint angles
in order to have overlap in the the ground-spectral domain.
Two sets of crossing orbits InSAR experiments are described.
The results of the first experiment, are discussed.

Index Terms— SAR, SAR interferometry

1. INTRODUCTION

SAR Interferometry theory usually considers geometries in
which the trajectories corresponding to the pair of InSAR ac-
quisitions are almost perfectly parallel. A consequence ofthis
condition is the common understanding that the two acquisi-
tions most be acquired with similar, if not identical, Doppler
centroids (fDC) in order to maximize the common Doppler
spectral content of the images. In the case of InSAR under
non-parallel trajectories, however, this common understand-
ing is no longer valid, and an offset of the individual Doppler
spectra is necessary in order to achieve a coherent interfero-
gram. Interestingly, this phenomenon was reported in 1988
[1], in the context of the SIR-B experiments.

The required frequency offset of the individual SAR im-
ages increases as the angle between the trajectories augments.
As a consequence, at some point the common spectral con-
tent cannot be obtained just from filtering the available spec-
tra of two acquisitions with the same nominalfDC . In this
case, it is necessary to acquire the images with a carefully
controlledfDC offset, i.e. with a carefully controlled rela-
tive squint. The azimuth steering capabilities of TerraSAR-X
(TSX) and its sibling TanDEM-X (TDX) satellite (TerraSAR-
X add on for Digital Elevation Measurements), together with
their uniquely flexible commanding, turns them into an ideal
platform for experiment with these type of non-parallel acqui-
sitions.

The TanDEM-X project is partly funded by the German Federal Ministry
for Economics and Technology (Förderkennzeichen 50 EE 1035)

Section 2 of this papers briefly presents a reformulation
of the crossing-orbit interferometry problem in terms of a 2-
D spectral rotation of the sampled ground spectrum. Section3
describes a set of experimental acquisition, while the results
are discussed in Section 4.

2. THEORY

Let us assume a SAR system that moves along the x-axis and,
for simplification, over a flat terrain. The resulting SAR im-
agesamplesthe 2-D spectrum of the complex scattering coef-
ficient �(x, y), so that the resulting image can be expressed,
in the wavenumber domain, as

S0(kx, ky) = �(kx, ky)W (kx − kx0, ky − ky0), (1)

with W (⋅, ⋅) some baseband windowing function,

kx0 =
2�fDC0

vx
= 2k0 sin 0 sin �0

ky0 =2k0 cos 0 sin �0,

(2)

y represents the ground range direction,fDC0
the Doppler

Centroid, vx the horizontal velocity of the system,k0 the
wavenumber associated to the carrier frequency, 0 is the
ground projection of the squint angle, and�0 is the incidence
angle. Basically, this represents a rectangular spectrum cen-
tered at(kx0, ky0).

Let us now consider a second image acquired by a sys-
tem flying in a slightly different direction, rotated by an angle
�. In its own coordinate system, the spectrum of this second
image will be

S1(k
′

x, k
′

y) = �(k′x, k
′

y)W (k′x − k′x1, k
′

y − k′y1), (3)

which again will correspond to a rectangular spectrum cen-
tered this time at(k′x1, k

′

y1). Considering the reference sys-
tem rotation, the 2-D spectrum of the second image in the
original reference system is centered at

kx1 =k′x1 cos�− k′y1 sin�

ky1 =k′x1 sin�+ k′y1 cos�.
(4)



and, the entire spectrum can be written as

S1(kx, ky) = �(kx, ky)W
′(kx − kx1, ky − ky1), (5)

whereW ′(⋅, ⋅) represents the squinted spectral window. The
two spectra are conceptually represented in the left diagram
of Figure 1 for the case in which both images are acquired
with zero Doppler Centroid (DC). In order to be able to form
a useful interferogram it is clear that the overlap between the
spectra given by (1) and (5) should be maximized. It is now
useful to define

Δkx =kx1 − kx0

Δky =ky1 − ky0.
(6)

There will be spectral overlap if these two terms are small
compared to2�/�x and2�/�y, respectively, where�y repre-
sents the ground range resolution and�x the azimuth resolu-
tion. For small values of�, similar incidence angles (Δ� =
�1 − �0 ≈ 0), and small squint angle difference (ΔΨ =
Ψ1 −Ψ0) these spectral shifts reduce to:

Δkx ≈ 2k0(sin 0 cos �0Δ� + cos 0 sin �0(Δ − �))

Δky ≈ 2k0(cos 0 cos �0Δ� − sin 0 sin �0(Δ − �)).

(7)

Assuming also small squints (or Doppler Centroids) yields

Δkx ≈ 2k0 sin �0(Δ − �) =
2�ΔfDC

vx
− 2k0� sin �0

Δky ≈ 2k0 cos �0Δ�.

(8)

The range spectral shift,Δky, reduces to the typical spectral
shift studied for parallel orbits [2]. Note that a variationof the
incidence angle given byΔ� is the result of a normal baseline
component. The azimuth spectral shift,Δkx, depends on the
angle between the orbits and on the relative squint between
the two acquisitions. It is zero if the horizontal rotation of
the reference system (�) equals the ground projection of the
squint angle (Δ ). Geometrically this means that the target
is being observed from the same ground projected direction.

The alignment of the spectra after applying a relative
squint is illustrated by the right diagram in Figure 1, where
all the angles are clearly exaggerated, and a zero cross-track
baseline is assumed. In practice for small rotations and squint
angles, and considering thatky0 ≫ 2�/�y, their effect is
practically reduced to a spectral shift in azimuth.

A pair of images acquired with different squints in or-
der to compensate the crossing angle will present different
Doppler spectra in their respective range-azimuth coordi-
nates. It is interesting to note, however, that the spectralcom-
ponents will be automatically aligned by the interferometric
processing, namely, the flat earth phase removal. Hence, any
common-band filtering in azimuth should be done taking into
account the spectral modulation.

Predicted Configured Real
Δkx (rad/m) -0.92 - -0.93
Δky (rad/m) -0.81 - -0.825

Relative squint 0.126∘ 0.145∘ 0.127∘

Table 1: Crossing orbit InSAR parameters for first experi-
ment

3. EXPERIMENT DESCRIPTION

Two sets of experiments have been conducted.

3.1. Pursuit Monostatic acquisitions

During the weeks previous to this first stable interferometric
configuration, reached on July 20, TDX had to carefully ap-
proach TSX from an initial along-track separation of 16000
km. For two spacecraft placed in the same orbital plane, an
along-track separation results in different ground-tracks due
to Earth’s rotation. The ground-tracks have a maximum sepa-
ration at the equator but cross at some point at high latitudes.

The data considered in this paper corresponds to a de-
scending acquisition over October Revolution Island, in the
Russian Arctic, on July 16th at 00:41 UTC. Based on the pre-
dicted TSX and TDX orbits, the expected azimuth spectral
shift was -0.92 rad/m at 40 degree off-nadir look angle, re-
quiring a DC offset of 1.1 kHz, which is a significant fraction
of the Doppler Bandwidth. The desiredΔfDC corresponds
to a relative azimuth antenna squint of 0.13∘, with the trailing
TDX system looking forward with respect to TSX. In prac-
tice, TSX was configured with a backward squint of -0.066∘,
and TDX with a forward squint of 0.079∘, resulting in a rela-
tive squint of 0.145∘ (see Table 1).

The cross-track baseline varied during the 29 s acquisition
(200 km strip image) from 1.9 km to 2.4 km. For the results
presented below it was approximately 2.0 km, which corre-
sponds to a height of ambiguity of 3.8 m. This is about an
order of magnitude smaller than the nominal values assumed
for the mission (in bistatic operations).

3.2. Quasi-repeat pass acquisitions

The same acquisition concept can be applied for a single
spacecraft considering different tracks. Since the orbital
plane is more or less fixed in an inertial frame, tracks sepa-
rated in time by approximately a whole number of days tend
to be relatively close. For the 11 day repeat-cycle orbit of
TSX, the closest pairs of tracks correspond to a temporal lag
of 5 or 6 days, and the second closest pairs to a 1-day lag.
As before, it is only possible to obtain small enough cross
tracks at very high latitudes. Moreover, since the angle be-
tween the ground-tracks is much larger the region where the



Fig. 1: Conceptual representation of the 2-D ground spectra for a pair of crossing acquisitions. Due to the rotation, if both
images are acquired withfDC = 0 , different parts of the 2-D ground spectrum are sampled. By acquiring the data with some
relative squint , the spectral overlap is maximized.

Δt (days) Δkx Δky RequiredΔsquint hamb (m)
1 -21.8 -0.29 2.96∘ 8.0
5 10.9 -0.07 -1.48∘ 41.9

Table 2: Crossing orbit InSAR spectral shifts (before squint-
ing) and required relative squint for second experiment

baselines are adequate for interferometry are constrainedto a
very narrow range of latitudes.

As an experimental site, an area located approximately at
78∘S, 57∘W, corresponding to the Antarctic ice cap, was cho-
sen. The location was selected with the goal of minimizing
the range spectral shifts for both a 1 day and a 5 day quasi-
repeat pass acquisitions, as shown Table 2. A set of three data
takes on April 20th, 25th and 26th of 2011, so that there was
a 5 day lag between the first and second acquisition, and 1
days between the second and the third, and then repeated in
the next 11 day cycle. In order to minimize the negative im-
pact of spectral shift in range, a 300 MHz pulse-bandwidth
was used and an incidence angle of 47∘ was selected. The
required relative squint angles were of 0.039∘, -1.447∘ and
1.526∘, respectively.

4. RESULTS

The results shown in Figure 2 correspond to a 20 km ground-
range by 31 km in azimuth strip of October Revolution Island.
The slant-range-azimuth images show, from left to right, the
relative brightness, the interferometric phase and the inter-
ferometric coherence. The images have been rotated so that
North is roughly at the top. A 9x6 multi-look window has
been applied to the data yielding 12x12 m2 pixels. SAR fo-
cusing and interferometric processing was performed using

the Microwaves and Radar Institute’s Experimental Interfero-
metric processor (TAXI) [3]. The data were processed with-
out any azimuth common-band spectral filtering. In range,
the spectral shift was in the order of 20% of the available
bandwidth, making common-band filtering a necessity. The
high interferometric coherence obtained, up to 0.95 in some
areas, illustrates how the originally displaced Doppler spectra
is aligned after co-registation and flat earth removal.

Figure 3 shows a rendering of the DEM obtained, with
height ranging from 0 m at sea-level to 585 m at the South-
Western corner of the image. With the estimated coherence,
the standard deviation of the point-to-point errors is, in most
cases, in the 10-20 cm range, with values down to 5-6 cm in
the high coherence areas.

5. CONCLUSION

The theory and results discussed in this paper show the pos-
sibility of acquiring compatible interferometric pairs with a
significant squint angle between the ground tracks of the or-
bits. Somewhat counter-intuitively, it is shown that under
these conditions, the images must be acquired with relative
squint angles leading to significant large Doppler Centroids
(the Doppler Centroid difference can, in fact be much larger
than the PRF).

The first experiment resulted in an unusually large inter-
ferometric baseline. The results obtained show that, due tothe
high coherence inherent to single-pass interferometry, a for-
mation flying InSAR mission can result in height accuracies
in the order of 10 cm. This may be exploited in the future,
for example, to measure changes of (fast decorrelating) ice
topography.

Future work will focus on processing and acquiring more
quasi-repeat pass experiments. The resulting data sets, offer-
ing 1, 5 and 11 day repeat pass intervals, may be interesting,



Fig. 2: From left to right: relative brightness, interferometricphase, and interferometric coherence of an area corresponding to
the North-Eastern coast of October Revolution Island, in the Russian Arctic. The images are in slant-range (from right to left)
azimuth (top to bottom) coordinates.

to study the temporal decorrelation behavior of polar ice.
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Fig. 3: Geocoded and rendered DEM. The zoom-in (red rect-
angle) illustrates the high level of topographic detail.


