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ABSTRACT

This paper presents a new estimation scheme for optimally
deriving clutter parameters with high resolution POLSAR
data. The heterogeneous clutter in POLSAR data is described
by the Spherically Invariant Random Vectors model. Three
parameters are introduced for the high resolution POLSAR
data clutter: the span, the normalized texture and the speckle
normalized covariance matrix. The asymptotic distribution
of the novel span estimator is investigated. A novel hetero-
geneity test for the POLSAR clutter is also discussed. The
proposed method is tested with airborne POLSAR images
provided by the ONERA RAMSES system.

1. INTRODUCTION

The recently launched polarimetric SAR (POLSAR) sys-
tems are now capable of producing high quality images of
the Earth’s surface with meter resolution. The goal of the
estimation process is to derive the scene signature from the
observed data set. In the case of spatially changing surfaces
(”heterogeneous” or ”textured” scenes) the first step is to de-
fine an appropriate model describing the dependency between
the polarimetric signature and the observable as a function
of the speckle. In general, the multiplicative model has been
employed for POLSAR data processing as a product between
the square root of a scalar positive quantity (texture) and the
description of an equivalent homogeneous surface (speckle)
[1], [2].

This paper is organized as follows. The POLSAR pa-
rameter estimation strategy for SIRV clutter model both with
normalized texture, and with normalized covariance matrix
is presented in Sect. 2 and Sect. 3, respectively. Then, the
novel span estimator is introduced in Sect. 4. Next, some es-
timation results are shown in Sect. 5 on a real high-resolution
POLSAR dataset acquired by the ONERA RAMSES system.
Eventually, in Sect. 6, some conclusions are presented.

2. SIRV CLUTTER MODEL WITH NORMALIZED
TEXTURE

The SIRV is a class of non-homogeneous Gaussian pro-
cesses with random variance [3], [4]. The complexm-
dimensional measurementk is defined as the product be-
tween the independent complex circular Gaussian vector
ζ ∼ N (0, [T ]) (speckle) with zero mean and covariance
matrix [T ] = E{ζζ†} and the square root of the positive
random variableξ (representing the texture):k =

√
ξ · ζ. It

is important to notice that in the SIRV definition, the proba-
bility density function (PDF) of the texture random variable
is not explicitly specified. As a consequence, SIRVs describe
a whole class of stochastic processes [5].

For POLSAR clutter, the SIRV product model is the
product of two separate random processes operating across
two different statistical axes [6]. The polarimetric diversity
is modeled by the multidimensional Gaussian kernel. The
randomness of spatial variations in the radar backscattering
from cell to cell is characterized byξ. Relatively to the po-
larimetric axis, the texture random variableξ can be viewed
as a unknown deterministic parameter from cell to cell.

The texture and the covariance matrix unknown param-
eters can be estimated from the ML theory. ForN i.i.d.
(independent and identically distributed) secondary data, let
Lk(k1, ...,kN |[T ], ξ1, ..., ξN ) be the likelihood function to
maximize with respect to[T ] andξi.

Lk(k1, ...,kN ; [T ], ξ1, ..., ξN ) =
1

πmNdet{[T ]}N
×

×
N∏

i=1

1

ξm
i

exp

(
−k

†
i [T ]−1

ki

ξi

)
. (1)

The corresponding ML estimators are given by [7]:

∂lnLk(k1, ..., kN |[T ], ξ1, ..., ξN)

∂ξi

= 0 ⇔ bξi =
k
†
i
[T ]−1

ki

m
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As the variablesξi are unknown, the following normal-
ization constraint on the texture parameters assures that the
ML estimator of the speckle covariance matrix is the Sample
Covariance Matrix (SCM):

[ bT ] =
1

N

N
X

i=1

kik
†
i

= [ bT ]SCM ⇔
1

N

N
X

i=1

kik
†
i

„

1 −
1

bξi

«

= [0m].

(4)
The generalized ML estimator forξi are obtained by intro-

ducing Eq. 4 in Eq. 2:

ξ̂i =
k
†
i [T̂ ]−1

SCMki

m
. (5)

Note theki primary data is the cell under study.
The normalized texture estimator from Eq. 5 is known as

the Polarimetric Whitening Filter (PWF-SCM) introduced by
Novak and Burl in [1].

3. SIRV CLUTTER MODEL WITH NORMALIZED
COVARIANCE MATRIX

Let now the covariance matrix be of the form[T ] = σ0[M ],
such that Tr{[M ]} = 1. The product model can be also writ-
ten ask =

√
τ · z, wherez ∼ N (0, [M ]). σ0 andξ are two

scalar positive random variables such thatτ = σ0 · ξ.
Using the same procedure as in Sect. 2 and given the fact

that the covariance matrix is normalized, it is possible to com-
pute the generalized ML estimator of[M ] as the solution of
the following recursive equation:

[M̂ ]FP = f([M̂ ]FP ) =
1

N

N∑

i=1

kik
†
i

k
†
i [M̂ ]−1

FP ki

. (6)

This approach has been used in [8] by Conte et al. to derive
a recursive algorithm for estimating the matrix[M ]. This al-
gorithm consists in computing the Fixed Point off using the
sequence([M ]i)i≥0 defined by:

[M ]i+1 = f([M ]i). (7)

This study has been completed by the work of Pascal et al. [9],
[10], which recently established the existence and the unique-
ness, up to a scalar factor, of the Fixed Point estimator of the
normalized covariance matrix, as well as the convergence of
the recursive algorithm whatever the initialization. The al-
gorithm can therefore be initialized with the identity matrix
[M̂ ]0 = [Im].

The generalized ML estimator (PWF-FP) for theτi tex-
ture for the primary dataki is given by:

τ̂i =
k
†
i [M̂ ]−1

FP ki

m
. (8)

One can observe that the PWF-FP texture from Eq. 8 has
the same form as the PWF-SCM. The only difference is the
use of the normalized covariance estimate given by the FP
estimator instead of the conventional SCM [6].

4. MAIN RESULT

The span (total power)σ0 can be derived using the covariance
matrix estimators presented in Sect. 2 and Sect. 3 as:

σ̂0 =
k
†[M̂ ]−1

FPk

k†[T̂ ]−1
SCMk

. (9)

Note that Eq. 9 is valid when consideringN identically dis-
tributed linearly independent secondary data and one primary
data. It can be seen as a double polarimetric whitening filter
issued from two equivalent SIRV clutter models: with nor-
malized texture variables and with normalized covariance ma-
trix parameter.

The main advantage of the proposed estimation scheme is
that it can be directly applied with standard boxcar neighbor-
hoods.

4.1. Asymptotic statistics of σ̂0

This section is dedicated to the study of large sample prop-
erties and approximations of the span estimatorσ̂0 form Eq.
9.

On one hand, the asymptotic distribution of the FP esti-
mator from Eq. 6 has been derived in [10]. The FP estimator
computed withN secondary data converges in distribution
to the normalized SCM computed withN [m/(m + 1)] sec-
ondary data. Since the normalized SCM is the SCM up to a
scale factor, we may conclude that, in problems invariant with
respect to a scale factor on the covariance matrix, the FP esti-
mate is asymptotically equivalent to the SCM computed with
N [m/(m+1)] secondary data. Hence one can set the degrees
of freedom of FP normalized covariance matrix estimators as:

q1 = N
m

m + 1
. (10)

On the other hand, Chatelain et al. established the multi-
sensor bivariate gamma distribution PDF [11]:

PbΓ(y1, y2; p1, p2, p12, q1, q2).

The scale parametersp2 andp1, the shape parametersq2 >
q1 andp12 are linked to the mean parametersµ1, µ2, to the
number of degrees of freedomn1, n2, and to the normalized
correlation coefficientρ such as:

q1 = n1, q2 = n2, p1 =
µ1

q1
, p2 =

µ2

q2
, p12 =

µ1µ2

q1q2
(1−ρ).

Using these results, we derived the PDF of the ratioR =
y1/y2 of two correlated Gamma random variables:

PRΓ(R, p1, p2, p12, q1, q2) = Rq1−1

(
p2

p12

)q1
(

1

p2

)q2

×

×
(

p12

p1 + Rp2

)q2+q1 Γ(q1 + q2)

Γ(q1)Γ(q2)
× (11)



×H3

[
q1 + q2, q2 − q1, q2; R

p1p2 − p12

(p1 + Rp2)2
,

p1p2 − p12

p2(p1 + Rp2)

]
,

where H3(α, β, γ; x, y) =

∞∑

m,n=0

(α)2m+n(β)n

(γ)m+nm!n!
xmyn is

one of the twenty convergent confluent hypergeometric series
of order two (Horn function), and(α)n is the Pochhammer
symbol such that(a)0 = 1 and(a)k+1 = (a + k)(a)k for any
positive integerk.

By taking into consideration both Eqs. 10, 11 and the
Cochran’s theorem, the PDF of the span estimator from Eq.
9 converges asymptotically to the the ratio of two correlated
Gamma random variables PDF (the ratio of two quadrat-
ics). Moreover, the degrees of freedomn1 and n2 are set
to N [m/(m + 1)] and N (the number of secondary data),
respectively.

4.2. The σ0 test

In this section we propose to show how the estimator from Eq.
9 is linked with a binary hypothesis testing problem, also:

• under the null hypothesisH0, the observed target vector
k =

√
ξ · ζ belongs to the SIRV clutterζ ∼ N (0, [T ])

with normalized texture,

• under the alternative hypothesisH1, the primary target
vectork =

√
τ · z belongs to the SIRV clutterz ∼

N (0, [M ]) with normalized covariance matrix.

The Neyman-Pearson optimal detector is given by the fol-
lowing likelihood ratio test (LRT):

Λ (k) =
pk(k/H1)

pk(k/H0)

H1

≷
H0

λ. (12)

After expressing the PDF under each hypothesis, it results
that:

Λ (k) =

1

πmdet{[M ]}τm

exp
(
−k

†[M ]−1
k

τ

)

1

πmdet{[T ]}ξm

exp
(
−k†[T ]−1k

ξ

)
H1

≷
H0

λ. (13)

By plugging into the LRT the ML texture estimators from
Eqs. 5 and 8 we obtain:

Λ (k) =
det{[T ]}
det{[M ]}

(
k
†[T ]−1

k

k†[M ]−1k

)m
H1

≷
H0

λ. (14)

Next, we assume the ratio of determinants is a deterministic
quantity and we denote it byα. This is an approximation,
since in practice the ratio of determinants is also computed
using the ML estimators of the respective covariance matrix
with N secondary data. Finally, by replacing the known co-
variances by their ML estimates the generalized LRT is:

Λ (k) = ασ̂0
−m

H1

≷
H0

λ. (15)

As α appears as a deterministic quantity only, it is possible to
use the PDF derived in Sect. 4.1 to set the decision threshold
λ for a specific false alarm probability.

5. RESULTS AND DISCUSSIONS

The high resolution POLSAR data set, illustrated in Fig. 1,
was acquired by the ONERA RAMSES system over Toulouse,
France with a mean incidence angle of500. It represents a
fully polarimetric (monostatic mode) X-band acquisition with
a spatial resolution of approximately50 cm in range and az-
imuth. In the upper part of the image one can observe the
CNES buildings.

Fig. 1. Toulouse, RAMSES POLSAR data, X-band,1500 ×
2000 pixels: amplitude color composition of the target vector
elementsk1-k3-k2.

Fig. 2 presents the zoom image, where a narrow diplane
target was previously detected. Fig. 2-(a),(b),(c) shows the
FP-PWF texture, the SCM-PWF normalized texture, and the
proposed span estimator̂σ0, respectively. For comparison,
the Multi-look PWF (MPWF) has been illustrated in Fig. 2-
(d). The proposed estimator exhibits better performances in
terms of spatial resolution preservation than the MPWF span
estimator: the ring effect (two large dips on a spatial profile
near the boundaries of a pointwise target is reduced.

Finally, Fig. 3 illustrates the detection map obtain using
the LRT from Eq. 15 with25 secondary and one primary
data. The detection threshold has been obtained by Monte
Carlo integration of the PDF from Eq. 11 with a false alarm
probability set toPfa = 10−3 in each pixel. Note that the
PDF integration for such a smallPfa is quite time consuming
and fast numerical approximations need to be investigated in
the future for going to an operational level.



6. CONCLUSIONS

This paper presented a new estimation scheme for optimally
deriving clutter parameters with high resolution POLSAR im-
ages. The heterogeneous clutter in POLSAR data was de-
scribed by the SIRV model. Three estimators were introduced
for describing the high resolution POLSAR data set: the span,
the normalized texture and the speckle normalized covariance
matrix. The asymptotic distribution of the new span estimator
has been established. The estimation bias on homogeneous
regions have been assessed also by Monte Carlo simulations.
Based on these issues, a novel test has been introduced for
selecting the most appropriate model for POLSAR heteroge-
neous clutter described by SIRVs.

(a) (b)

(c) (d)

Fig. 2. Toulouse, RAMSES POLSAR data, X-band,50 ×
50 pixels, zoom image: (a) FP-PWF texture, (b) SCM-PWF
normalized texture, (c) span estimated usingσ̂0 from Eq. 9
and (d) SCM-MPWF span.
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