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ABSTRACT 2. SSIRV CLUTTER MODEL WITH NORMALIZED
TEXTURE

This paper presents a new estimation scheme for optimallyhe SIRV is a class of non-homogeneous Gaussian pro-
deriving clutter parameters with high resolution POLSARcesses with random variancel [3[.] [4]. The complex
data. The heterogeneous clutter in POLSAR data is describefimensional measuremeit is defined as the product be-
by the Spherically Invariant Random Vectors model. Threaween the independent complex circular Gaussian vector
parameters are introduced for the high resolution POLSAR ~ A (0,[T]) (speckle) with zero mean and covariance
data clutter: the span, the normalized texture and the #peckmatrix [T] = E{¢¢'} and the square root of the positive
normalized covariance matrix. The asymptotic distributio random variable (representing the texturek = /€ - (. It

of the novel span estimator is investigated. A novel heterois important to notice that in the SIRV definition, the proba-
geneity test for the POLSAR clutter is also discussed. Theility density function (PDF) of the texture random variabl
proposed method is tested with airborne POLSAR images not explicitly specified. As a consequence, SIRVs describ
provided by the ONERA RAMSES system. a whole class of stochastic processeés [5].

For POLSAR clutter, the SIRV product model is the
product of two separate random processes operating across
two different statistical axe$1[6]. The polarimetric disity

1. INTRODUCTION is modeled by the multidimensional Gaussian kernel. The
randomness of spatial variations in the radar backscagferi

) _ from cell to cell is characterized k. Relatively to the po-
The recently launched polarimetric SAR (POLSAR) Sys-jgrimetric axis, the texture random varialglean be viewed

tems are now capable of producing high quality images ofs a4 unknown deterministic parameter from cell to cell.

the Earth's surface with meter resolution. The goal of the  The texture and the covariance matrix unknown param-
estimation process is to derive the scene signature from thgers can be estimated from the ML theory. Pri.i.d.
observed data set. In the case of spatially changing SWfaCﬁndependent and identically distributed) secondary data

("heterogeneous” or "textured” scenes) the first step iseto d Lu(ky, ... kn|[T], &1, ..., Ex) be the likelihood function to
fine an appropriate model describing the dependency betwegRyimize with respect tfl'] ande;.

the polarimetric signature and the observable as a function

of the speckle. In general, the multiplicative model hasbee ) _ 1
employed for POLSAR data processing as a product between Licller, oo k3 [T, €, 0 ) = TN det [T]}N
the square root of a scalar positive quantity (texture) &ed t

description of an equivalent homogeneous surface (speckle N le [T 'k; 1

M, 2. X lj[l yexp ) (1)
This paper is organized as follows. The POLSAR pa- . . . .

rameter estimation strategy for SIRV clutter model bothhwit The corresponding ML estimators are givenby [7]:

normalized texture, and with normalized covariance matrix ging, (k, ..., ky/|[T],&1, ..., €x) ~  K[T) 'k

is presented in Seck] 2 and Sekct. 3, respectively. Then, the e, =0e&=—""—") (2

novel span estimator is introduced in Sédt. 4. Next, some es-
timation results are shown in Selct. 5 on a real high-resmiuti ~ dInLi (ky, ..., kn|[T], &1, ..., EN) 0 [T] = 1 Z k;k!
POLSAR dataset acquired by the ONERA RAMSES system. T N N4 g

Eventually, in Sec{.]6, some conclusions are presented. (3)
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4. MAIN RESULT
As the variableg; are unknown, the following normal-
ization constraint on the texture parameters assureshbat tThe span (total poweb), can be derived using the covariance
ML estimator of the speckle covariance matrix is the Samplenatrix estimators presented in Sédt. 2 and $éct. 3 as:
Covariance Matrix (SCM): .
1 - 1 & 1 o KI[M]ppk
[Tl= % ;kikg =[Tsom & 5 ;kikj (1 - z) = [Om]. 70 = G ©
. _ . . () Note that Eq[P is valid when consideriig identically dis-
Th_e generah_zed ML_ estimator fy are obtained by intro- tributed linearly independent secondary data and one pyima
ducing Eq[H# in EdL12: data. It can be seen as a double polarimetric whitening filter
~ K [f]géMki issued from two equivalent SIRV clutter models: with nor-
-0, (3)  malized texture variables and with normalized covarianae m
trix parameter.
The main advantage of the proposed estimation scheme is

;=
m

Note thek; primary data is the cell under study.

The normalized texture estimator from K£g. 5is knownas, ' ) X X !
the Polarimetric Whitening Filter (PWF-SCM) introduced by that it can be directly applied with standard boxcar neighbo
Novak and Burl in[[1]. hoods.

3. SIRV CLUTTER MODEL WITH NORMALIZED 41 Asymptoticstatisticsof 7o

COVARIANCE MATRIX This section is dedicated to the study of large sample prop-

) ) erties and approximations of the span estimatpform Eq.
Let now the covariance matrix be of the fofffi| = oo[M], [

such that T{[M]} = 1. The product model can be also writ- o gne hand, the asymptotic distribution of the FP esti-
ten ask = /7 - z, wherez ~ N (0, [M]). o and¢ are tWo  mator from Eq[B has been derived [n[10]. The FP estimator
scalar positive random variables such that oy - &. computed withN secondary data converges in distribution
Using the same procedure as in SBtt. 2 and given the fagl the normalized SCM computed witki[m/(m + 1)] sec-
that the covariance matrix is normalized, it is possiblecime ondary data. Since the normalized SCM is the SCM up to a
pute the generalized ML estimator pF/] as the solution of  gcae factor, we may conclude that, in problems invariatit wi

the following recursive equation: respect to a scale factor on the covariance matrix, the P est
- - 1N Kokt mate is asymptotically equivalent to the SCM computed with
[M|pp = f([M]rp) = = Z T,ii_zl (6) N[m/(m+1)] secondary data. Hence one can set the degrees
N i=1 ki [M]ppki of freedom of FP normalized covariance matrix estimators as
This approach has been usedlih [8] by Conte et al. to derive m
a recursive algorithm for estimating the matfi]. This al- h= Nm +1° (10)

gorithm consists in computing the Fixed Pointfofising the
sequencé[M];);>o defined by:

[M]i1 = f([M]:). (7
This study has been completed by the work of Pascal étlal. [9],
m, which recently established the existence and theuﬂ“q The scale paramete@ andpL the Shape parametey§ >

ness, up to a scalar factor, of the Fixed Point estimatoref thy, andp,, are linked to the mean parameters 1, to the

normalized covariance matrix, as well as the convergence ¢fymber of degrees of freedom, n», and to the normalized
the recursive algorithm whatever the initialization. THe a correlation coefficienp such as:

gorithm can therefore be initialized with the identity nbatr

On the other hand, Chatelain et al. established the multi-
sensor bivariate gamma distribution PDE|[11]:

Pyr(y1,y2: 01,02, P12, 41, q2)-

[M]o = [Im]. g1 =n1, g2 = ng, p1 = ﬂ, p2 = B, P12 = Mlm(l—P)-
The generalized ML estimator (PWF-FP) for thetex- e 42 N9z
ture for the primary datk; is given by: Using these results, we derived the PDF of the ratic=
k! [ﬁ]q Kk, y1/y2 of two correlated Gamma random variables:
7= (8)

m q1 1 q2
_ —1( P2
One can observe that the PWF-FP texture fromEq. 8 hastRr (1 p1, P2, P12, 01, ¢2) = R (E) <p_2) <
the same form as the PWF-SCM. The only difference is the
use of the normalized covariance estimate given by the FP " ( D12 >42+‘“ I'(q1 + q2)

estimator instead of the conventional SCM [6]. 1+ Rpa )T () X (11)



xHs |q1 + g2, 92 — q1, g2 R bip2 — P12 _P1P2 — P12 As « appears as a deterministic quantity only, it is possible to
’ T (o + Rp2)?2  pa(pr + Rp2) |7 use the PDF derived in SeEf 1.1 to set the decision threshold
A for a specific false alarm probability.

where Hjs(o, 8,7;2,y) = Z Mxmyn is

o (Vminmin!
one of the twenty convergent confluent hypergeometricserie
of order two (Horn function), anda),, is the Pochhammer 5. RESULTSAND DISCUSSIONS
symbol such thata)y = 1 and(a)r+1 = (a + k)(a), forany
positive integet. The high resolution POLSAR data set, illustrated in Eig. 1,

By taking into consideration both Eq§.]10.] 11 and thewas acquired by the ONERA RAMSES system over Toulouse,
Cochran’s theorem, the PDF of the span estimator from EcFrance with a mean incidence anglesof. It represents a
converges asymptotically to the the ratio of two correlate fully polarimetric (monostatic mode) X-band acquisitioitiw
Gamma random variables PDF (the ratio of two quadrata spatial resolution of approximately cm in range and az-
ics). Moreover, the degrees of freedom andn, are set imuth. In the upper part of the image one can observe the
to N[m/(m + 1)] and N (the number of secondary data), CNES buildings.
respectively.

4.2. The oy test

In this section we propose to show how the estimator from E :
is linked with a binary hypothesis testing problem, also:

e under the null hypothesid, the observed target vector
k = /¢ - ¢ belongs to the SIRV cluttej ~ A(0, [T])
with normalized texture,

e under the alternative hypothedi, the primary target
vectork = /7 - z belongs to the SIRV cluttez ~
N (0, [M]) with normalized covariance matrix.

The Neyman-Pearson optimal detector is given by the fol
lowing likelihood ratio test (LRT): ’

A k) = px(k/Hy)

~ p(k/Hp) Ifo)\' 12)

Fig. 1. Toulouse, RAMSES POLSAR data, X-barn@00 x
After expressing the PDF under each hypothesis, it result2000 pixels: amplitude color composition of the target vector
that: elements;;-ks-ks.

_kT[M]*lk)
A (k)

1
_ xrdetmjrr P ( i 21 A (13) Fig. [2 presents the zoom image, where a narrow diplane
st OXD _ KTk H, target was previously detected. Figl 2-(a),(b),(c) shdves t
mrdek(T)e ( ¢ ) FP-PWF texture, the SCM-PWF normalized texture, and the
By plugging into the LRT the ML texture estimators from proposed span estimatép, respectively. For comparison,

Eqgs.[% an@8 we obtain: the Multi-look PWF (MPWF) has been illustrated in FIg. 2-
m (d). The proposed estimator exhibits better performances i
(k) = de{[T]} < kN7 'k > T (14)  terms of spatial resolution preservation than the MPWF span
det{[M]} \k{[M]-'kx) g, estimator: the ring effect (two large dips on a spatial peofil

. . _ ._._.near the boundaries of a pointwise target is reduced.
Next, we assume the ratio of determinants is a deterministic _ . ) i ) _
Finally, Fig. [3 illustrates the detection map obtain using

guantity and we denote it by. This is an approximation,

since in practice the ratio of determinants is also computef'® LRT from Eq. [Tb with25 secondary and one primary
using the ML estimators of the respective covariance matrig@@. The detection threshold has been obtained by Monte
with N secondary data. Finally, by replacing the known CO_Carlo integration of the PDF from Ef.J11 with a false alarm

- g :
variances by their ML estimates the generalized LRT is;  Probability set toPy, = 107" in each pixel. Note that the
PDF integration for such a smafl, is quite time consuming

AK) = age—™ Iil \ 15 and fast numerical approximations need to be investigated i
(k) = ado = (15)  the future for going to an operational level.



6. CONCLUSIONS

This paper presented a new estimation scheme for optimal
deriving clutter parameters with high resolution POLSAR im
ages. The heterogeneous clutter in POLSAR data was
scribed by the SIRV model. Three estimators were introduc
for describing the high resolution POLSAR data set: the spa
the normalized texture and the speckle normalized covegian
matrix. The asymptotic distribution of the new span estonat
has been established. The estimation bias on homogene
regions have been assessed also by Monte Carlo simulatio
Based on these issues, a novel test has been introduced
selecting the most appropriate model for POLSAR heterog
neous clutter described by SIRVS.

(d)

Fig. 2. Toulouse, RAMSES POLSAR data, X-bari) x

50 pixels, zoom image: (a) FP-PWF texture, (b) SCM-PWF
normalized texture, (c) span estimated usiggfrom Eq. [9
and (d) SCM-MPWF span.
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