Abstract:
The main objective of this paper is to assess the capability of a soil moisture (SMC) algorithm adapted to the GMES Sentinel-1 characteristics, developed within the frame...Show MoreMetadata
Abstract:
The main objective of this paper is to assess the capability of a soil moisture (SMC) algorithm adapted to the GMES Sentinel-1 characteristics, developed within the framework of an ESA project (SMAD-1). The SMC product shall be generated from Sentinel-1 data in near-real-time and delivered to the GMES services within 3 hours from observations. Two different complementary approaches were proposed: the first approach was based on Artificial Neural Networks (ANN), which represented the best compromise between retrieval accuracy and processing time, thus being compliant with the timeliness requirements. The second approach was based on a Bayesian Multi-temporal method, allowing an increase of the retrieval accuracy, especially in case of few ancillary data available, at the cost of computational efficiency, taking advantage of the frequent revisit time achieved by Sentinel-1. The algorithm was validated in several test areas in Italy, US and Australia, and finally in Spain by performing a `blind' validation.
Date of Conference: 22-27 July 2012
Date Added to IEEE Xplore: 10 November 2012
ISBN Information: