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ABSTRACT 

 

Textural analysis can bring valuable information in the 

classification or the segmentation process of land covers 

displaying regular patterns in very high resolution remotely 

sensed images. In this study, we investigate how features 

extracted by multivariate modeling of the local spatial 

dependence in the wavelet domain can efficiently capture 

the textural content of maritime pine forest images in 

comparison with a commonly used texture analysis 

approach, the GLCM. To evaluate the performances of the 

tested methods, we used a content based image retrieval 

framework and created a database of image patches 

representing different development stages of the forest 

stands. Results show that multivariate models display higher 

retrieval rates than GLCM-based methods with yet a higher 

sensitivity to the dominant orientation in anisotropic 

textures. These observations open up new perspectives in 

the use of multivariate modeling for textural features 

extraction in very high resolution image classification. 

 

Index Terms— textural feature, multivariate models, 

GLCM, very high resolution, forest. 

 

1. INTRODUCTION 

 

Submetric images produced by the new generation of Very 

High Resolution (VHR) airborne and spaceborne sensors 

(e.g. PLEIADES) enable to capture the geometric aspect of 

small objects which are only observable through their 

spectral properties at lower resolution. It is for example the 

case for vegetation rows in vineyards, orchards and young 

trees stands. The detection and analysis of such land covers 

can thereby benefit from the use of object-oriented 

techniques rather than more traditional pixel-based 

approaches. Many studies have addressed this challenge by 

considering the planting patterns in the landscape as textures 

and by computing statistical features on these textures to 

improve classification or segmentation results on VHR 

remotely sensed images. In these studies, common tools to 

characterize textures are Grey Level Cooccurrence Matrices 

(GLCM) [1-2], variograms [3], Gabor filters [4-5], wavelet 

representations [6-7], etc. These approaches all lead to a 

small-sized representation of the textural content of an 

image since a few descriptors ˗˗˗ generally referred to as 

textural signature ˗˗˗ are extracted. 

In the wavelet domain, Do & Vetterli [8] suggested the 

use of probabilistic models to describe the wavelet 

coefficients. This technique consisted in modeling the 

distribution of subbands coefficients with a Probability 

Density Function (PDF) whose fitting parameters could be 

further used as a textural signature. More recently, other 

works investigated the use of multivariate models to express 

the joint distribution of wavelet coefficients, such as the 

multivariate Gaussian distribution, Spherically Invariant 

Random Vectors (SIRVs) [9] and copula based models [10]. 

In this paper, we focus on the textural analysis of a 

database of maritime pine forest image patches in a content 

base image retrieval framework. In particular, we investigate 

how multivariate models applied in the wavelet domain can 

improve the image retrieval rate in comparison with other 

textural analysis approaches such as GLCMs and wavelet-

based GLCMs. 

The paper is structured as follows. Section 2 introduces 

the texture based image retrieval framework and the 

multivariate modeling of wavelet coefficients. Section 3 

describes the experimentation context. Some texture based 

classification results are presented in Section 4 on very high 

resolution maritime pine forest images. Conclusions are 

finally reported in Section 5. 

 

2. TEXTURE ANALYSIS 

 

Texture based image retrieval refers to the automatic 

retrieval of images from a database based on a set of textural 

features. The process operates in two steps. The first one is 

the feature extraction step. Each patch of the database is 

represented by a finite set of descriptors called features. The 

second step, called similarity measurement, consists in 

measuring the similarity between two images based on the 

set of textural features.  
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In this paper, three techniques are considered in the 

textural feature extraction step: Grey Level Co-occurrence 

Matrices (GLCM), Wavelet Co-occurrence Features (WCF) 

and multivariate stochastic models. 

 

2.1. GLCM 

 

The use of the GLCM requires the identification of two 

control parameters, i.e. the distance and the orientation 

between the pairs of sites. Given the very high spatial 

resolution context, the inter-row distance and the multi-

oriented aspect of the vegetation rows, pairs of sites at a 

distance of 2 pixels in four directions (0°, 45°, 90° and 

135°) are considered for the computation of the matrices. 

Then, in order to select the right set of textural features, a 

set of Haralick’s second order statistics [11] to which the 

mean and the variance of grey levels are added, is first 

derived from the GLCMs. Because many of these features 

can be redundant due to their high correlation, a further step 

using a correlation matrix and a Principal Component 

Analysis was employed to identify the most useful features. 

As a result, a subset of four descriptors, homogeneity, 

entropy, correlation and the mean grey level, were selected. 

For each image patch of the database, a feature vector 

containing the four descriptors averaged on the four 

directions is obtained. Similarity measures based on the 

Mahalanobis distance are then computed between patches 

vectors.   

 

2.2 WCF 

 

As proposed in [12], GLCMs are computed on each 

wavelet detail subband using an orthogonal wavelet 

transform with Daubechies filter db4 and two scales of 

decomposition. The original image being down-sampled at 

each scale of the decomposition, a distance between the 

pairs of sites of 1 pixel instead of 2 is chosen. As 

previously, the four GLCM features ˗˗˗ homogeneity, 

entropy, correlation and mean ˗˗˗ are calculated and 

averaged on four directions. The resulting feature vectors 

consist in the concatenation of the four descriptors obtained 

for each detail subband. A Mahalanobis distance is 

calculated between the vectors of each image patch to 

evaluate the similarity.  

 

2.3 Multivariate Models 

 

First, an orthogonal wavelet transform with Daubechies 

filter db4 and two scales of decomposition is applied on 

each image patch. For each wavelet subband, 3x3 

neighborhoods are considered. These neighborhoods are 

regarded as empirical observations of the local spatial 

dependence of subband wavelet coefficients. The 

distribution of these observations is modeled using 

multivariate PDFs whose parameters are estimated 

according to the maximum likelihood principle. The 

parameters used on each subband in this fitting procedure 

constitute the textural signature of the subimage. Several 

multivariate models are analyzed in this study: the 

multivariate Gaussian, the Spherically Invariant Random 

Vector (SIRV) model with a deterministic multiplier 

(SIRV-Gaussian), the SIRV model with a G0 distribution 

[9]. 

Concerning the similarity measure between two feature 

vectors, an intrinsic distance should be considered. Here, the 

Rao geodesic distance is chosen since a close form 

expression exists for the SIRV-Gaussian model. For the G0 

distribution, an approximation of the geodesic distance can 

be done when assuming the geodesic coordinate functions as 

straight lines. More information concerning the 

implementation of those models can be found in [9].               

 

 

 

 

 

Fig 1: Forest texture classes, (A) forest age class 1, (B) 

forest age class 2, (C) forest age class 3, (D) forest age 

class 4, (E) clear-cuts, (F) regenerating clear-cuts and 

(G) windfall. 

 



3. EXPERIMENTATION 

 

We used panchromatic VHR airborne images (0.5m 

resolution) acquired in February 2009 in the Landes de 

Gascogne forest, South West of France, where the dominant 

vegetation consists of managed maritime pine (Pinus 

pinaster) stands. The forest structure is heterogeneous with 

stand ages ranging from 0 (clear cuts) to approximately 50 

years. These images were acquired a few weeks after a 

storm and significant windfall damages can be observed 

throughout the landscape.  

A large database of texture patches was created by 

selecting homogeneous regions of 256x256 pixels 

representative of 7 identified classes of interest: 4 age 

classes defined by the average crown diameter in the area, 

one class representing windfall damages and two transitional 

classes corresponding to clear cut stages, namely clear cuts 

and regenerating clear cuts (Fig.1).  

A second database was produced in order to assess the 

sensitivity of the tested models to orientation. Unlike in the 

first database where the native dominant orientation of the 

stands is preserved (multi-orientation DB), each patch 

displaying an anisotropic texture is rotated so that its main 

orientation is forced to 0° (mono-orientation DB). 

For each method, a feature vector containing the 

signature is obtained for each texture image. Based on these 

feature vectors, a similarity measure is computed between 

the signatures of each patch of the database resulting in an 

NxN distance matrix where N is the total number of images 

in the database.  

An equal number of images is extracted from each class 

of the database by random selection. Each image patch is 

then considered as a query image. The top matches are 

extracted from the distance matrix to evaluate the image 

retrieval performance of each method using two different 

approaches: (1) the Average Retrieval Rate (ARR) defined 

as the average percentage of images belonging to the same 

class as the query in the top ni matches, where ni is the 

number of patches in the class i of the query and (2) the 

overall accuracy computed after a k Nearest Neighbor 

(kNN) classifier. This random selection process is repeated 

several times. The average performance and its standard 

deviation are computed.  

 

4. RESULTS AND DISCUSSION 

 

The resulting mean performances obtained for 25 iterations 

and 50 image patches per class (Table 1) display higher 

retrieval rates for multivariate models than for GLCM-based 

approaches, especially in the case of SIRV-based models. 

This tends to show that in this study context, the multiscale 

multivariate modeling of the spatial dependence of wavelet 

coefficients enables to capture textures more accurately than 

second-order statistics such as GLCMs. However, global 

performances stay low which is most probably due to high 

intra-class variability and inter-class overlapping. 

Results in Table 1 also point out a sensitivity of the 

tested multivariate models to orientation. Their retrieval 

performances for the multi-orientation database are indeed 

lower than for the mono-orientation database, while 

performances remain similar for both databases in the case 

of the GLCM method. In other words, multivariate models 

do not comply with rotation invariant requirements. This is 

Table 1: Image retrieval performances (%)  
 multi-orientation DB 

Methods ARR kNN* 

GLCM 38.2 ± 0.9 60.5 ± 2.0 

WCF 30.9 ± 0.7 54.5 ± 2.6 

Gaussian SCM 34.6 ± 1.0 62.5 ± 1.7 

SIRV – Gaussian 40.0 ± 1.0 73.0 ± 1.7 

SIRV – G0 39.6 ± 0.9 70.5 ± 1.5 

Gaussian Copula 36.5 ± 1.0 66.8 ± 1.2 

 mono-orientation DB 

Methods ARR kNN* 

GLCM 38.3 ± 1.4 59.3 ± 2.3 

WCF 32.0 ± 0.7 57.8 ± 2.6 

Gaussian SCM 38.6 ± 1.0 71.4 ± 1.7 

SIRV – Gaussian 48.5 ± 1.1 76.3 ± 1.9 

SIRV – G0 46.3 ± 1.2 76.0 ± 2.0 

Gaussian Copula 39.1 ± 1.0 69.3 ± 1.8 

* k = 10 – Iterations = 25 – Patches per class = 50 

 

 

Table 2: Per-class Average Retrieval Rate (%) 

multi-orientation DB 

 
GLCM 

SIRV – 

Gaussian 

SIRV – 

G0 

Gaussian 

Copula 

Forest 1 32.0 16.5 23.8 31.1 

Forest 2 43.1 30.9 33.2 30.8 

Forest 3 33.0 47.6 44.5 39.2 

Forest 4 37.2 59.2 56.4 47.2 

Windfall 46.4 52.5 55.3 48.3 

CC 41.3 54.1 44.0 36.4 

rCC 34.1 19.3 20.3 22.8 

mono-orientation DB 

 
GLCM 

SIRV – 

Gaussian 

SIRV – 

G0 

Gaussian 

Copula 

Forest 1 32.6 44.0 47.5 44.8 

Forest 2 42.6 48.6 46.1 34.7 

Forest 3 33.1 39.9 40.1 37.1 

Forest 4 37.8 60.8 58.8 49.8 

Windfall 46.1 45.0 50.7 41.8 

CC 41.7 48.8 40.3 33.6 

rCC 34.3 52.4 40.3 32.1 

CC = Clear-Cuts – rCC = regenerating Clear-Cuts 



also confirmed by per-class performances (Table 2) for the 

multi-orientation database where GLCM method shows 

higher performances for typical anisotropic textures (forest 

age class 1, forest age class 2 and regenerating clear-cuts) 

while multivariate models are more efficient in retrieving 

isotropic textures. Nevertheless, once orientation is 

compensated as in the mono-orientation database, 

multivariate models exhibit better performances for all 

classes. 

 

5. CONCLUSIONS 

 

In conclusion, the characterization of textures with 

multivariate models in the wavelet domain, in particular 

SIRV-based models, is appealing in the context of forest 

age classes image retrieval in comparison to more 

traditional second-order statistics such as GLCMs. These 

approaches should nevertheless be used with caution in the 

case of anisotropic textures unless the dominant orientation 

has been previously corrected. These results suggest 

interesting perspectives in terms of use of multivariate 

models in texture based classification of regularly patterned 

land covers. 
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