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ABSTRACT

Full waveform bathymetric LIDAR allows a detailed exami-
nation of laser backscatter from the water surface, water col-
umn and benthic layer. The presence of seagrass on the ben-
thic layer would also be expected to influence the backscat-
tered radiation encapsulated in the full waveform observa-
tions. The combination of conventional geometric features,
radiometric features and derived geometric features from the
waveform analysis may make it possible to identify the pres-
ence of seagrass or even classify the different types of sea-
grass. An analysis of the correlation of seagrass location
with different full waveform LiDAR parameters is presented.
Overall, it is found that a high degree of correlation exists be-
tween the presence of seagrass and LiDAR intensity, benthic
elevation and benthic return pulse width. Surface roughness,
curvature and vertical uncertainty are found to have weak cor-
relation with the presence of seagrass.

Index Terms— LiDAR, Bathymetry, Seagrass, Full
waveform

1. INTRODUCTION

Discrete Light Detection and Ranging(LiDAR) has become
a popular surveying technique to obtain 3D target or topo-
graphic information in recent years[l1]. Airborne LiDAR
bathymetry(ALB) is increasingly used in nautical charting,
navigation and coastal surveying. ALB systems contain a
laser that emits a blue-green laser beam, which can penetrate
through the water surface and get LiDAR returns from the
subsurface and submerged objects[2]. Seagrass is submerged
vegetation that plays a key role in aquatic ecosystems by pro-
viding habitats, trapping sediments and slowing water flow
for other biological species. It also provides the food and
living environments for diverse species and can be used to in-
vestigate fisheries health and waste treatment[3]. Monitoring
seagrass regularly is therefore an important environmental
initiative; however obtaining 3D metrics of seagrass over
large areas via traditional in-situ techniques is time consum-
ing and expensive.
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Emergent bathymetric LiDAR sensors and waveform pro-
cessing algorithms make it possible to extract 3D measure-
ments in these previously inaccessible shallow water envi-
ronments. Full waveform LiDAR assists in this regard as
it records the full backscattered echoes which enables the
possibility to extract more information about the target and
propagation medium[4]. However, seagrass still presents a
challenge, as is most seagrass has a height of less than 0.5m,
which is beneath the vertical resolution in the return pulse,
and hence echoes from the seagrass and benthic laser overlap
as a single peak return waveform[5]. Despite these chal-
lenges, the presence of seagrass can still disturb or stretch
the return waveform shape. In this paper, we present the ra-
diometric and geometric features derived from full waveform
bathymetric LiDAR and the derived point cloud to investi-
gate their potential for seagrass identification and mapping.
By combining the features with passive optical sensors, such
as hyperspectral imagers, the preliminary results show great
potential for characterizing the presence of seagrass from
remotely sensed bathymetric LiDAR data.

2. LIDAR WAVEFORM ANALYSIS

Full waveform LiDAR has been widely analyzed in both
topographic and bathymetric applications. For example,
for topography, full waveform was used to determine for-
est inventory and biomass, especially for the detection of
low vegetation that discrete LiDAR returns was unable to
identify[6]. In bathymetry, the fusion of the passive hyper-
spectral imagery and active full waveform LiDAR has helped
to improve both the detection and classification of object un-
der water surfaces, water column scattering properties and
water depth measurements[7, 8]. However, shallow water
LiDAR bathymetry full waveform processing has a number
of challenging characteristics; for instance the signal returns
from the water surface, water column and the benthic layers
returns overlap both temporally and spatially. There have
been previous attempts to solve the mixture by applying
the NIR(topographic) waveform processing techniques to
the shallow water waveforms[9]. However the widely used
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method for topographic waveform processing, Gaussian de-
composition, performs poorly when trying to separate the
highly overlapped returns from water surface, water column
and benthic layer[10]. For Gaussian decomposition, a good
initial guess of the number of components and approximate
temporal locations of the return pulse peaks and widths are
required[11]. Because shallow water bathymetry is very com-
plex it is not easy to satisfy these requirements. As a viable
alternative, for this work we have employed a continuous
wavelet transform (CWT) to process the full waveform Li-
DAR return signal. The CWT has the advantage that it does
not require an initial guess of peak locations and widths; it is
an iterative method to check for all possible peak locations
based on transformation parameters.

3. DATASET, DATA PROCESSING AND ANALYSIS

Our study area is located within Redfish Bay near Corpus
Christi, TX, and it is composed of mostly very shallow wa-
ter (<2m)(Fig 1.). The area is a scientific preserve where
seagrass can grow relatively uninhibited by human activi-
ties. Seagrass present in Redfish Bay consists primarily of
three different seagrass species: thalassia, halodule, and sy-
ringodium, macroalgae is also present. Most of the seagrass
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Fig. 1. Overview of Red Fish Bay in Corpus Christi

is less than 0.5m in vertical height and while this may not
result in individual LiDAR echoes, it is expected that some of
the waveform features could detect the presence of seagrass.
Data for this study was collected by the National Center for
Airborne Laser Mapping (NCALM) using an Optech Aquar-
ius system in Sept, 2012. Full waveform was recorded with
a 1 GHz digitizing frequency at 12 bits resolution. Only a
single flightline was recorded with full waveform informa-
tion, and therefore no overlap area at the swath edges were
recorded. The laser was flown with a slight forward tilt to
attempt to mitigate specular reflections at nadir from the wa-

ter surface. Primary flight and sensor information is given in

Table 1.

A Continuous Wavelet Transformation (CWT) was used

Table 1. Airborne Acquisition Parameters

Operating altitude | 500m(nominal)
Aircraft speed 60m/s(nominal)
Scanning rate 35kHz

Beam divergence | lmrad

Forward tilt angle | 5°

Scan angle +24.2°

Swath width 450m

Point density 1.298pts/m?

to find return peaks and the peaks location were then fed
into Expectation-Maximization (EM) algorithm to estimate
the pulse width. In Table 2 the waveform shots represents

Table 2. Waveform processing result specification

Waveform (pts) | Discrete (pts)
Waveform shots 3,808,187
Total points 4,355,334
Lost points 49,060
Actual points 4,306,274 3,803,958
Only 1 return 3,206,068 3,777,103
2 returns 549,918 13,396
3 returns 122 21
>4 returns 1 0

the total number of waveform processed, and total points is
the total potential points detected by waveform processing.
Lost points are points discarded because of missing georefer-
encing information and actual points are the points detected
and georeferenced. From the actual points, about 13.21%
more points were detected in the waveform. From the return
numbers, over 14.44% of returns in waveform records have
been broken into separate returns comparing at 0.35% for
discrete records, which shows that a significant amount of the
full waveform processing has been able to resolve multiple
returns not detected by the discrete processing.

In order to inspect the ability of full waveform to detect the
presence of seagrass, different features have been derived
from the waveform/point cloud:

e Ground elevation (Ele): is the elevation of ground returns
after removal of the water surface;

e Ground intensity (Int): is derived from the full waveform by
removing the return gate and derived from the EM estimated
pulse amplitude;

e Ground pulse width (Pul): is the standard derivation of
the pulse width estimated by EM, normalized with respect to
return intensity;

e Roughness (Rou): is a local parameter defined as the dis-
tance from a point to the plane formed by its neighbors within
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Fig. 2. Features presenting seagrass with RGB imagery from passive optical camera (a),532nm intensity imagery from passive
optical camera (b), ground points (filtered) elevation map (ellipsoidal height referring to WGS84) (c), ground points intensity
map (d), ground returns pulse width (e), roughness for local planes (f), curvature for local planes (g), local vertical height(f).

a 3m radius;

e Mean curvature (Cur): is a local parameter defined as the
mean curvature with radius of 3m;

e Vertical uncertainty (Ver): is vertical elevation difference
comparing to the lowest point within a 3m grid.

Results for all of these paramters are displayed in Figure 2.
An examination of Fig 2 shows that elevation and intensity
maps show some clusters which might be seagrass; pulse
width map shows possible disturbances along the laser path;
longer pulse widths could be caused by both the water depth
(turbidity) or seagrass presence causing multiple backscatter-
ing echoes. Roughness and curvature maps depict the local
geometric features as larger roughness and curvature would
be expected for seagrass presence. Finally, vertical uncer-
tainty could possibly show similar feature as roughness with
larger uncertainty for seagrass locations.

A simple Pearsons correlation analysis was conducted includ-
ing the passive hyperspectral imagery band at a wavelength
of 532nm (Pas) to examine the underlying correlation of each
feature derived from full waveform LiDAR,; the results are

displayed in Table 3. The correlations of the local region fea-

Table 3. Pearson’s correlation for each feature
Ele Int Pul | Rou | Cur | Ver | Pas

Ele | 1.00 | 0.28 | 0.10 | 0.08 | 0.13 | 0.27 | 0.25
Int | 0.28 | 1.00 | 0.51 | 0.23 | 0.09 | 0.19 | 0.45
Pul | 0.10 | 0.51 | 1.00 | 0.06 | 0.01 | 0.11 | 0.21

Rou | 0.08 | 0.23 | 0.06 | 1.00 | 0.42 | 0.24 | 0.07
Cur | 0.13 | 0.09 | 0.01 | 0.42 | 1.00 | 0.24 | 0.03
Ver | 0.27 | 0.19 | 0.11 | 0.24 | 0.24 | 1.00 | 0.09

Pas | 0.25 | 045 | 0.21 | 0.07 | 0.03 | 0.09 | 1.00

tures to passive imagery (roughness, curvature, and vertical
uncertainty) are lower than the those for pulse width, ele-
vation and intensity, suggesting that a combination of these
waveform derived features would be good parameters for de-
tection of seagrass presence.

ENVI 4.8 was used to classify all the six features from the
full waveform bathymetric LIDAR data with supervised Min-
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imum Distance (MD) method. Unfortunately, only 9 points of
ground truth were collected within the full waveform flight-
line extent. In the vicinity of the ground truth data, 9081
pixels were chosen for supervised training data, which is
about 0.28% of the entire data area. Three classes were cho-
sen, ground (including features above water surface), sand
(benthic ground) and grass; the statistics of classification was
shown in table 4. From the Table, the grass under water sur-
face is still disturbing the classification of the bare benthic
returns and the ground returns, but the overall accuracy can
be up to 75%, and is encouraging despite the lack of in situ
ground control for this comparison.

Table 4. Statistics of the supervised classification

Over all accuracy 74.5987%
Ground Truth(Percent)

Class Grass Sand | Ground | Total
Unclassified 0.00 0.00 0.00 0.00
Grass 75.81 28.77 22.43 29.60
Sand 16.58 71.23 0.00 29.03
Ground 7.61 0.00 77.57 41.37
Total 100.00 | 100.00 | 100.00 | 100.00

4. CONCLUSION

This study has assessed the ability of full waveform bathy-
metric LiDAR in shallow water to detect the presence of sea-
grass. With proper waveform processing algorithms, better
separation of water surface return and benthic returns can
be achieved, which shows promise to improve the identifi-
cation of seagrass under shallow water. Different features
have been derived from the full waveform data. At first analy-
sis, the pulse width, elevation and return intensity show good
correlation with the presence of seagrass. A simple super-
vised classification shows approximately 75% accuracy how-
ever the benthic features (grass and sand) disturb the results
making it more difficult to discriminate each class. However,
the preliminary results still show that full waveform has the
capability to describe the features for very shallow water and
assist in discriminating different classes. Further work with
more ground truth data is needed to validate the results and
combine the active features to the passive observations for
enhanced automated seagrass identification.
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