
ONTOLOGY-BASED SEMANTIC CLASSIFICATION OF 

SATELLITE IMAGES: CASE OF MAJOR DISASTERS

Hafidha Bouyerbou 
13

, Kamal Bechkoum
2
, Nadjia Benblidia

1
, Richard Lepage

3
 

1
School of Sciences, University of Blida, 

Blida, Algeria  
h.bouyerbou@univ-blida.dz

2
School of Science and Technology, University of Northampton 

Northampton, United Kingdom 

3
Ecole de Technologie Supérieure 

Montreal, Quebec, Canada 

Abstract—The International Charter1"Space and Major 

Disasters" is regularly activated during a catastrophic event and 

offers rescue team damage maps. Most of these maps are built by 

means of satellite image manual processing, which is often 

complex and demanding in terms of time and energy. Automatic 

processing offers prompt treatment; nevertheless it usually 

presents a semantic gap handicap. The exploitation of ontologies 

to bridge the semantic gap has been widely recommended due to 

their quality of knowledge representation, expression, and 

discovery. In this work, we present an ontology-based semantic 

hierarchical classification method to undertake this problem. 

Ontology components are translated to image-based parameters 

and used to assist the classification process with two levels and 12 

embedded classes. The region of interest is selected from the first 

level, and exhaustively analyzed and classified at the second level. 

The 2010 Haiti earthquake was selected as study area for this 

work. Experiments were performed using very high resolution 

multi-temporal QuickBird imagery and eCognition software.  

Index Terms— Major disaster, semantics, ontology, satellite 

image, classification. 

1. INTRODUCTION

Increasing number of natural and man-made disasters such 

as earthquake, tsunami, forest fire, and flood, prompted various 

organizations to make more effort in the disaster management 

field in order to save more lives. Finding and integrating 

consistent data and information related to a disaster in a quick 

manner is a critical step for effective decision making. The 

integration of remote sensing data can provide important 

knowledge, facilitate the relief task, and guide teams on the 

ground in their damage assessment. 

The design of successful image analysis systems requires 

knowledge about the underlying problem solving processes. 

The better the knowledge about the process and the better this 

knowledge can be represented in the system, the more useful 

the extracted information will be [1].  

1
 http://www.disasterscharter.org/ 

Ontologies have been selected as one of the most powerful 

knowledge representation techniques. In the recent years, 

ontologies become one of the most important areas of interest 

in the geographic information science. The use of ontologies to 

bridge the semantic gap has been widely recommended due to 

their quality of knowledge representation, expression, and 

discovery. Directly or indirectly, ontologies specify the 

composition, structure, and basic properties of the simplified 

worlds that our models represent, and clarify the intended 

meanings of the terms we use [2].  

This work brings a solution to identify hidden knowledge 

and bridge the gap between the results of automatic 

classification techniques, and high level semantics using 

human-defined ontologies.  

We will describe in the following an ontology-based 

semantic hierarchical classification method and its application 

on multi-temporal QuickBird imagery.  The remainder of this 

paper is structured as follows. We present in section 2 the study 

area and material. Our methodology is described in section 3. 

Results and discussion are provided in section 4, and finally, 

conclusion is given in section 5.   

2. STUDY AREA AND MATERIAL

2.1 Study Area 

The 2010 Haiti earthquake was selected as event study area 

for this work, precisely, the Port-au-Prince region. Haiti was 

selected as a study area since multiple pre and post-disaster 

images were made available by various providers. We exploit 

in this work pre-disaster pansharpened Quickbird images 

acquired in February 2009, almost a year before the 

earthquake, and post-disaster Quickbird images of the same 

area acquired in January 2010, a few days after the earthquake. 

Fig. 1 shows a multi-temporal region of the subset, where (a) 

illustrates the pre-disaster, and (b) the post-disaster region.  
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Fig. 1. Multi-temporal Port-Au-Prince (Haiti) su
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Fig. 2. Ontology levels and class
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Fig. 3. Translation of the ontology
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3.2 Multiresolution Segmentation 

The segmentation algorithm used in eCognition is a region-

growing method where pixels whose attribute values represent 

a region are collected. The multiresolution algorithm adopted 

in this step is a bottom up region-merging technique proposed 

by Baatz and Schäpe [3] in which, for a d-dimensional feature 

space f, the “degree of fitting” h is defined as: 

               ℎ = �∑ (��� − �
�)
�                    (1) 

This  distance  can  be  furthermore  standardized  by  the  

standard  deviation  over  the  feature   segments  in  each 

dimension: 

                   ℎ = ∑ (���������� )
�                       (2) 

Fig. 5 (a) shows segmentation results at level 1 with scale 

100, shape 0.2, and compactness 0.5. Image resolution was 

reduced to 8 m. Segmentation results at level 2, with image 

resolution 0.6 m, are shown in Fig. 5 (b) with scale 32, shape 

0.1, and compactness 0.5. 

 

3.3 Multi-level classification 

At level 1, Normalized Difference Vegetation Index 

(NDVI) was employed to extract Natural Surface, Normalized 

Difference Water Index (NDWI) to extract Aquatic Surface, 

and Built-up Area Index (BAI) to extract Artificial Surface. 

NIR band and contextual features are utilized for correction 

and refinement. Level 1 classification results are used to select 

the region of interest for the classification at level 2 for both 

pre and post-disaster images. 

                     ���� = �������
�������                              (3) 

                     ���� =  ����
 ����                                  (4) 

                        !"� = #����
#����                                 (5) 

At Level 2, Green Urban Area is first extracted based on 

NDVI index in equation (3) with a threshold set to 0.2. Some 

shadow was misclassified at this level; a threshold for NIR is 

set inferior to 30 to distinguish shadow from Green Urban 

Area. The remaining shadow is farther classified with low 

brightness and density thresholds. No Artificial Water was 

detected in our dataset. 

After creating vegetation and shadow mask, only Buildings, 

and Roads and Associated Area remain to be classified. 

However, these two classes are very similar in terms of spectral 

information; it is difficult to classify them properly by spectral 

features only [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Methodology overview
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Fig. 5. Multiresolution segmentation 

Gray Level Co-occurrence Matrix (GLCM) and Gray 

Level Difference Vector (GLDV), in addition to a set of 

geometric features (e.g. pixel area, length/width, rectangular 

fit, and elliptic fit), and class-related features (e.g. border to, 

overlap of two object, and distance), which were formerly 

translated from the ontology, are used at this level to separate 

the two classes. 

 

3.4 Change detection 

Two classes were the focus of this step: Buildings, and 

Roads and associated area. A mask of Green Urban Area 

(Vegetation) and Shadow is created for T1 (pre-disaster 

dataset) and T2 (post-disaster dataset) maps. After 

classification, T1 map Buildings, and Roads and Associated 

Area classification results are synchronized on T2 map. 

Object-level comparison is performed for each object of 

these two classes and changes are highlighted.  

 

4. RESULTS AND DISCUSSION 

Multi-temporal pansharpened QuickBird imagery was 

chosen for experimental results. Fig. 6 (a) and (c) show the 

original QuickBird images with different resolution (8 m and 

0.6 m respectively). Fig. 6 (b) shows the classification results 

at Level 1, and Fig. 6 (d) shows the classification results at 

Level 2. Ontology-driven geometric features and class-

related features have clearly improved the classification 

results using only multispectral information. The nature of 

buildings and roads in Haiti was a drawback in this work as 

they are not well structured which did not allow us to go 

deeper in the ontology levels. 

 

5. CONCLUSION 

This paper brings a solution to identify hidden 

knowledge and bridge the gap between the results of state-

of-the-art automatic classification techniques, and high level 

human semantics using human-defined ontologies. The 

high-level semantic represented by the ontology noticeably 

improves the automatic classification results, and lead to 

automatically understand and describe remote sensing data.  

 

Work is still in progress, and more experiments on post-

disaster imagery and change detection are compulsory. 

Nevertheless, we were able to present preliminary 

classification results that show the high potential of the 

ontology-based method.  
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Fig. 6. Multi-level classification results 

 

The use of LIDAR data, and metadata (e.g. road network 

maps, city map), can improve the classification accuracy 

and allow us to explore more ontology levels by giving 

additional information. GEO-MD application on other 

disaster classes (i.e. flood, and forest fire), change detection, 

and damage assessment, are subject to our future work. 
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