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ABSTRACT 
 
We have previously developed a best merge region-growing 
approach that integrates nonadjacent region object 
aggregation with the neighboring region merge process 
usually employed in region growing segmentation 
approaches. This approach has been named HSeg, because it 
provides a hierarchical set of image segmentation results. 
Up to this point, HSeg considered only global region feature 
information in the region growing decision process. We 
present here three new versions of HSeg that include local 
edge information into the region growing decision process at 
different levels of rigor. We then compare the effectiveness 
and processing times of these new versions HSeg with each 
other and with the original version of HSeg. 
 

Index Terms— Image processing, image analysis, 
image segmentation, image edge detection 
 

1. INTRODUCTION 
 
Described and discussed in Tilton, et al. [1] is a best merge 
region-growing segmentation approach that integrates 
nonadjacent region object aggregation with the neighboring 
region merging process usually employed in region growing 
segmentation approaches. This approach has been named 
HSeg, because it provides a hierarchical set of image 
segmentation results. We have noted that in some of the 
more detailed levels of the HSeg segmentation hierarchy, 
large and apparently homogeneous areas are sometimes 
separated into more than one region with region boundaries 
that do not correspond to any apparent object boundary. It is 
apparent that HSeg is responding to gradual changes in 
region features that are not important for most image 
analysis applications. Realizing that previous versions of 
HSeg consider only global region feature information in the 
region growing decision process, we have devised 
augmentations of HSeg that incorporate local edge 
information into the region growing process. We expect that 
these augmentations should make HSeg less sensitive to 
gradual changes in regions features, and generally improve 
the performance of HSeg. While any edge operator could be 
utilized, we have chosen to use edge information generated 

by the Frei-Chen edge operator [2] in our augmentations of 
HSeg. The Frei-Chen edge operator applies a combination 
of nine convolution masks to generate a normalized edge 
image that is sensitive to lines and/or edges in the 
horizontal, vertical and diagonal directions. 

The next two sections of this paper summarize the 
previous HSeg image segmentation approach (version 1.59, 
which similar to the version described in [1]) and the Frei-
Chen edge operator. We then describe three alternate 
approaches (versions 1.61, 1.71, and 1.81) for incorporating 
edge information into HSeg. We follow this with an 
evaluation of the effectiveness of these new versions of 
HSeg as compared to version 1.59. We conclude with a 
discussion of the results and considerations for future work. 
 

2. THE HSEG SEGMENTATION APPROACH 
 
The HSeg image segmentation approach is based on 
hierarchical step-wise optimization (HSWO) as described in 
[3]. HSWO is an iterative form of region growing, in which 
the iterations consist of finding the most optimal or best 
segmentation with one less region than the current 
segmentation. HSWO is performed by finding a threshold 
value, Tmerge, equal to the value of a dissimilarity criterion of 
the most similar pair of spatially adjacent regions, and then 
merging all pairs of regions that have dissimilarity equal to 
Tmerge. HSeg adds to HSWO a step following each step of 
adjacent region merges in which all pairs of spatially non-
adjacent regions are merged that have dissimilarity <= 
SwTmerge, where 0.0 <= Sw <= 1.0 is a factor that sets the 
priority between spatially adjacent and non-adjacent region 
merges. Note that when Sw = 0.0, HSeg reduces to HSWO. 
HSeg provides choices among several dissimilarity criteria, 
including one based on minimizing the increase of mean 
squared error between the region mean image and the 
original image data (BSMSE), and one based on the Spectral 
Angle Mapper (SAM) criterion [4]. All of these 
dissimilarity criterion depend on global region features such 
as region size (number of pixels), sum of pixel values in 
each spectral band and sum of the square pixel values in 
each spectral band. See [1] for a more complete description 
of HSeg and the dissimilarity criterion utilized by HSeg. 

 



3. THE FREI-CHEN EDGE OPERATOR 
 

Any edge operator can be used to generate edge 
information for input to the new versions of HSeg, including 
the well-known Sobel and Prewitt operators. We choose to 
use the Frei-Chen edge operator because it is sensitive to 
diagonal edges in addition to the vertical and horizontal 
edges that the Sobel and Prewitt operators are designed to 
detect.  

The Frei-Chen edge operator was first described in [2]. 
More recent updates of the Frei-Chen edge operator have 
resulted in a revision of the weighting factors for the Frei-
Chen masks (see [5]). Following [5], the Frei-Chen edge 
operator consists of the nine following unique 3x3 
convolution masks: 
 

 

 

 

 

 

The first four masks are used for edges, the next four for 
lines, and the last mask is to provide a mask average for 
normalization.  Since we are interested in image edges, we 
compute our edge value, Evalue, as follows: 

 

 

 
The value of Evalue will always be in the range of 0.0 through 
1.0, with a value of 1.0 representing the most abrupt 
possible edge (a “delta” edge). For most remotely sensed 
images, max(Evalue) will be less than 0.7. For multi-band 
images we usually use the band maximum of the edge value 
at each image pixel, but we can also use the band average or 
band minimum on an experimental basis. Another 
alternative is to compute the edge values for the first 
principal component image. 
 

4. INCORPORATING EDGE 
INFORMATION INTO HSEG 

 
We describe below three distinct approaches for 
incorporating edge information into HSeg. However, each 
of these approaches utilizes a fast merge region growing 
approach, first proposed in [6], to initialize the image 
segmentation based on the edge value information. In our 
implementation of this approach, we set an edge value 
threshold, Et, and merge all neighboring pixels that result in 
regions where max(Evalue) <= Et. 
 
4.1. HSeg Version 1.61 
 
This version is a simple extension of the original version in 
that one region feature value, Emax, is added to each region, 
which is the maximum value of Evalue for all pixels in the 
region. The weighting of this edge feature is controlled by a 
user settable parameter, Ew. The edge dissimilarity value, 
Edissim, is taken to be the maximum of Emax for the two 
regions being compared. We normalize the value of Edissim to 
range from 0.0 to 1.0, by computing 

, 
where  is the minimum value of Evalue over the 
entire image, I, and is the maximum value of 
Evalue over the entire image. An edge factor, Ef, is then 
computed as follows: 

Ef = (Sw + (1.0 - Sw)((1.0 – Ew) + Ew))/Sw 

The effect of this equation is to set Ef = 1.0 for Ew = 1 and 
 = 0.0, and Ef = 1.0/Sw for Ew = 1.0 and  = 1.0. 

The combined region dissimilarity is then computed as 
Cdissim = Rdissim*Ef, where Rdissim is the dissimilarity between 
the region pair for the original version of HSeg. Thus, an 
adjacent region is treated as a non-adjacent region for 

 = 1.0, and treated as an adjacent region for  = 
0.0, with gradations in-between for 0.0 <  < 1.0. 
 
4.2. HSeg Version 1.71 
 
This version is a more complicated extension of the original 
version in that a region data structure is modified to enable 
the tracking of the value of Evalue along the mutual boundary 
between two regions. The value of the edge dissimilarity 
value, Edissim, is taken to be the average of Evalue for all the 
mutual boundary pixels between the two regions. The value 
of Ef is then computed based on this value of Edissim in the 
same way as for HSeg Version 1.61. 
 
4.3. HSeg Version 1.81 
 
This version is a yet more complicated extension of the 
original version in that a region data structure is modified to 
not only enable the tracking of the value of Evalue along the 
mutual boundary between two regions, but also determine 
whether or not a region boundary pixel is adjacent to any 



other region. For this version, the value of the edge 
dissimilarity value, Edissim, is taken to be the average of Evalue 
for all the boundary pixels between the two regions that only 
have the other region as a neighboring region. The value of 
Ef is then computed based on this value of Edissim in the same 
way as for HSeg Version 1.61. 
 

5. COMPARATIVE RESULTS 
 
To provide continuity with our previous work, we evaluated 
the effectiveness of the new versions compared to each 
other and to the previous version using the region-based 
classification approach and the test data sets utilized in [1]. 
See [1] for a detailed description of this approach and the 
test data sets. In summary, a pixelwise classification based 
on support vector machine (SVM) is applied to the image 
data. Then, the region classification is obtained by 
considering a plurality vote rule, i.e., by assigning each 
spatially connected region from the segmentation result to 
the most frequently occurring class within the region. 
Results are presented here for three hyperspectral data sets: 
Washington DC Mall HYDICE, University of Pavia ROSIS 
and Indian Pines AVIRIS. 
 
Tables I, II and III report classification accuracy and 
segmentation processing time results for the three 
hyperspectral data sets across the compared segmentation 
approaches. Classification accuracy is reported in terms of 
overall accuracy (OA), average accuracy (AA) and kappa 
coeficient ( ), and processing time is provided in minutes 
and seconds (min:sec). HSeg parameter settings are 
provided in table notes (the SAM criterion is used here). 

TABLE I. 
RESULTS FOR WASHINGTON DC MALL HYDICE 

 OA AA  min:sec 
SVM 95.76 95.54 94.64 - 

HSWO 96.99 96.02 96.19 6:56 
HSeg V1.59 96.95 96.17 96.14 25:46 
HSeg V1.61 96.83 95.61 95.99 39:10 
HSeg V1.71 97.11 95.53 96.34 73:44 
HSeg V1.81 96.45 95.90 95.51 25:24 

Sw = 0.1, Et = 0.0 and Ew = 1.0. 

TABLE II. 
RESULTS FOR UNIVERSITY OF PAVIA ROSIS 

 OA AA  sec 
SVM 89.03 89.56 85.46 - 

HSWO 95.38 95.50 93.83 9:33 
HSeg V1.59 98.35 98.15 97.79 10:52 
HSeg V1.61 97.49 97.08 96.64 14:59 
HSeg V1.71 97.21 97.26 96.27 20:25 
HSeg V1.81 97.47 97.41 96.61 18:47 

Sw = 0.3, Et = 0.0 and Ew = 1.0. 

TABLE III. 
RESULTS FOR INDIAN PINES AVIRIS 

 OA AA  sec 
SVM 76.41 80.77 72.92 - 

HSWO 85.33 86.31 83.07 0:09 
HSeg V1.59 86.89 89.83 84.84 1:48 
HSeg V1.61 86.50 89.62 84.41 2:04 
HSeg V1.71 85.14 89.15 82.80 2:18 
HSeg V1.81 86.49 90.98 84.40 3:21 

Sw = 0.1, Et = 0.0 and Ew = 1.0. 
 
For these tests, the Frei-Chen edge operator was applied to 
the first principal component of the hyperspectral images.  
 
The comparative results on these hyperspectral data sets 
demonstrate no consistent advantage of the new versions of 
HSeg utilitizing edge information over the previous 
approach (HSeg V1.59). HSeg V1.71 produces a higher OA 
and  for the Washington DC Mall HYDICE data set, at a 
significant cost in processing time. HSeg V1.81 produces a 
better AA for the Indian Pines AVIRIS data set, but 
otherwise HSeg V1.59 produces better results. 
 
The processing time results are highly varied, and 
demonstrate that the processing time required is highly data 
dependent. While we expect that the processing times for 
HSeg V1.71 and HSeg V1.81 will generally be longer than 
processing times for HSeg V1.59 and V1.61, this isn’t 
always necessarily the case. 
 
In the introduction, we noted that with the previous version 
of HSeg (V1.59), we often see that large and apparently 
homogeneous areas are sometimes separated into more than 
one region with region boundaries that do not correspond to 
any apparent object boundary in some of the more detailed 
levels of the HSeg segmentation hierarchy. Even if the new 
versions of HSeg don’t demonstrate a clear advantage in the 
hyperspectral classification examples, do the new versions 
of HSeg at least solve this problem? 
 
The Ikonos image displayed in Fig. 1(a) is a suitable test 
case. This image, acquired on May 17, 2000, contains a 
large homogenous area, namely the Baltimore, MD inner 
harbor. In this case, the edge information utilized was the 
band maximum of the Frei-Chen edge operator value at each 
image pixel. As we can see in Fig. 1(b), HSeg V1.59 splits 
the inner harbor up into several regions with region 
boundaries that do not correspond to any obvious image 
feature. Figs. 1(c) and 1(d) show two different cases where 
HSeg V1.61 represents the inner harbor as one single region 
object. Fig. 1(c) shows that using the fast merge 
initialization step with Et = 0.05 is sufficient to merge the 
inner harbor into a single region object. In this case the 
region growing process employed after initialization was 



equivalent to that used in V1.59 since Ew was set to 0.0. We 
can see the additional effect of region growing incorporating 
edge information in Fig. 1(d), where Ew was set to 1.0. The 
clearest effect from incorporating edge information is seen 
in the Patterson Park area in the upper right of the image, 
where the grassy areas in Patterson Park are more clearly 
delineated with Ew = 1.0. In each case the segmentation 
result was taken where the global dissimilarity between the 
image data and region mean was 0.371. The BSMSE 
criterion was employed in this test. 
 
Figs. 1(e) and 1(f) show the corresponding results for HSeg 
V1.71 and V1.81, respectively. The significance of the 
differences in results between V1.61, V1.71 and V1.81 are 
not clear from the displayed image segmentation results. In 
one sense, the HSeg V1.81 results are quite different from 
the V1.61 and V1.71 results in there are 200 region classes 
at the point where the global dissimilarity reaches 0.371, 
whereas there are only 15 and 27 region classes at the 
equivalent point for versions 1.61 and 1.71, respectively. 
Further explorations before any firm conclusions can be 
made concerning the relative effectiveness of these new 
versions of HSeg incorporating edge information. 
 

6. CONCLUDING REMARKS 
 
In this paper we have proposed three alternate approaches 
for incorporating the edge information into HSeg image 
segmentation approach. Some quantitative results from a 
plurality vote classification approach provide mixed results 
concerning the effectiveness of the new implementations as 
compared to the previous version of HSeg. However, we 
have noted that large homogeneous areas are merged into 
one region much earlier in the region growing process with 
the new versions, as was desired. We will continue to 
evaluate and compare these versions of HSeg on other data 
sets, noting the tradeoffs between computation time and 
segmentation quality. 
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Fig. 1. (a) Ikonos image over the Balitmore, MD Inner 
Harbor area from May 17, 2000. (b) HSeg V1.59 result at 
global dissimilarity 0.371 (115 region classes and 9871 
region objects). (c) HSeg V1.61 result with Et = 0.05 and Ew 
= 0.0 at global dissimilarity 0.371 (192 region classes and 
9954 region objects). (d) HSeg V1.61 result with Et = 0.05 
and Ew = 1.0 at global dissimilarity 0.371 (15 region classes 
and 14 513 region objects). (e) HSeg V1.71 result with Et = 
0.05 and Ew = 1.0 at global dissimilarity 0.370 (27 region 
classes and 13 306 region objects). (d) HSeg V1.81 result 
with Et = 0.05 and Ew = 1.0 at global dissimilarity 0.371 
(200 region classes and 10 785 region objects). 


