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ABSTRACT 

 

With the development of new sensors and data processing 

techniques, ocean colour remote sensing has undergone rapid 

development in more accurately measurement of coastal shelf 

classification and concentration of chlorophyll. In this paper, 

multispectral images are employed to achieve these targets, 

using techniques including region-growing based segmentation 

for pixel classification and support vector regression for ChI-a 

prediction. Interesting results are reported to show the great 

potential in using state-of-the-art data analysis techniques for 

effective ocean colour remote sensing. 

 

Index Terms— ocean colour remote sensing; coastal classifica-

tion; chlorophyll concentration measurement; image segmentation; 

multispectral/hyperspectral imaging. 

 

1. INTRODUCTION 

 

Multispectral/hyperspectral imaging recently has been applied in a 

wide range of application areas such as remote sensing [1], foren-

sics [2], pharmaceuticals [3] and food analysis [4]. Hyperspectral 

imaging collects information from across the electro-magnetic 

spectrum, and thus produces dense sampling in the spectral do-

main, and can provide much richer information and better discrim-

ination ability than visible light images.  

As a particular application in remote sensing, ocean colour re-

mote sensing has transformed our ability to monitor dynamic rela-

tionships between physical and biogeochemical processes that 

underpin the role of natural waters in the global carbon cycle and 

the redistribution of suspended and dissolved materials across the 

globe. With more than a decade of continuous daily global cover-

age observations, there is a growing archive of ocean colour data 

that has the potential to act as an essential Global Climate Variable 

that may inform studies of regional, global and rapid climate 

change. 

With the rapid development of sensor and data processing tech-

niques, ocean colour remote sensing has undergone rapid changes 

in the degree of sophistication of our understanding of signal 

measurement technology and data interpretation issues. Sensor 

technology has developed from early satellite sensors with four 

operational wavebands (e.g. CZCS), through the current generation 

of multispectral sensors (e.g. SeaWiFS, MODIS and MERIS) to 

the recent deployment of the first operational hyperspectral sensors 

(e.g. HICO) [5]. These technological advances have supported the 

development of improved atmospheric correction processes, new 

and upgraded product algorithms (e.g. chlorophyll, inherent optical 

properties, diffuse attenuation coefficients…)  and new ways of 

partitioning the global ocean into bio-optical (biogeochemical) 

provinces (e.g. IOCCG Report 9).   

This paper will focus on two important tasks of ocean colour 

remote sensing, i.e. segmentation based coastal shelf classification 

and ChI-a measurement. In ocean colour remote sensing, data pre-

diction and data classification are emphasized [5], and typical ap-

proaches include support vector machine (SVM) [6] and k-means 

clustering [7]. In general, SVM requires that the appropriate train-

ing datasets are selected, and thus it may not suitable for the case 

that includes too many classifications or the case that very small 

region belongs to some classifications. In addition, K-means is 

very sensitive to the initial parameters and noise. As a result, in our 

work, we will focus on the method of region growing [8] for hy-

perspectral datasets segmentation. For ChI-a measurement, support 

vector regression is applied. Relevant techniques are discussed in 

detail in the next section.  

 

2. THE APPROACH 

 

With multispectral image data used as input, the first task is to 

identify various coastal shelf regions. According to the remote 

sensing reflectance data, segmentation based classification is em-

ployed, in which images are segmented into regions and followed 

by pixel based clustering for data classification. For multiple spec-

tral image segmentation, seedless region growing is applied to 

maintain the spatial coherency when similar pixel vectors are 

grouped together.  

Let I represent a M bands multispectral image as input, and Im 

denotes one band image, where ],1[ Mm . Let Sij represent a 

seed pixel for region growing whose spatial co-ordinate is (i, j). 

Starting from the top-left pixel S11, we sequentially scan the image 

to identify any pixel which has not been segmented into any 

groups. Then, this pixel will be picked up and used as a new seed 

for region growing. Pixels which are spatially adjacent to the seed 

pixel and satisfy certain conditions will be grouped into the clusters 

of the new seed. For any pixel which has been grouped into the 

cluster, its spatial adjacent pixels will be iteratively examined. This 

process will be repeated until all the pixels have been checked one 

by one in an iterative way. 

Similarity constraint is the major criterion used in determining 

whether a pixel needs be grouped into a cluster or not. For the pix-

els in a cluster, their mean vector  and co-variance matrix 

 can be obtained. A new pixel can be grouped into the cluster if 

its pixel vector p  satisfy 
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where   is a given threshold.  

Please note as the number of pixels in a cluster may increase 

step by step, the corresponding mean vector  and co-variance 

matrix  need be updated accordingly. At the first stage when 

there is only one pixel in the cluster, we set  as the 10% of the 

seed pixel, and  the unit matrix (or the identify matrix).  

Although pixel based region growing helps to segment the input 

image into regions, different regions at a distance may have similar 

average vector and need be further clustered as they actually repre-

sent the same kind of coastal shelves. To achieve this, for each pair 

of segmented regions, the similarity of their average spectral vector 

is calculated. If the similarity is over a given threshold, the two 

regions are clustered together. Eventually, each region is assigned 

to a new index as the results of region clustering.  

For the second task of ChI-a concentration prediction, support 

vector machine (SVM) is employed for training and prediction. 

With available ground truth data, support vector regression is ap-

plied to map from input spectral data to the ChI-a concentration, 

using a radial basis function (RBF) kernel. The learnt model is then 

applied for pixel based prediction, i.e. to predict ChI-a concentra-

tion for each pixel vector extracted from the multispectral image. 

For pixels clustered into a group, the average ChI-a value is also 

obtained for comparison. In fact, RBF kernelled SVM has been 

proven successful in a number of other applications [9-12], and 

detailed description of SVM and other machine learning approach-

es can be found in [1, 4, 9-10].   

 

3. EXPERIMENTS AND RESULTS 

 

The multispectral ocean dataset around U.K. that collected on 

May, 2007 was used for coastal shelf classification. This dataset 

include 9 bands with the following wavelengths: 412, 433, 488, 

 

  
Fig.1: The first two band images (top), the segmented results (bottom-left, over 2200 regions) and the final result after clus-

tering of similar regions (only 31 clusters). 

 



531, 547, 667, 678, 748 and 869 nm respectively. The spatial di-

mension of the image is 1000 by 1000 pixels.  

The first two band images are shown in Fig. 1, along with the 

segmented results from pixel based region growing and region 

clustering. As can be seen, region-growing based segmentation has 

successfully segmented the multi-spectral image. However, the 

number of regions is over 2200 which is too large to be interpreted 

by human experts. After region clustering, most lands and open 

water regions are grouped together. Afterwards, we have only 31 

clusters remained, which can be found closely adjacent to the 

coastal lines and are more easily interpretable for ocean physicists 

in checking their physical meaning. 

To predict the ChI-a concentration, another dataset from 

NOMAD (NASA bio-Optical Marine Algorithm Data set, 

http://seabass.gsfc.nasa.gov/seabasscgi/nomad.cgi) was used. After 

removal of missing data, 443 valid samples are obtained. In total 

300 samples were used for training the SVM and the remaining 

143 for testing. The squared correlation coefficients of training and 

testing achieved by us are 0.91 and 0.63, respectively. In addition, 

the mean squared error of training and prediction is 0.004 and 9.14, 

respectively. 

It is worth noting that based on the extracted coastal shelf lines, 

we can define our region of interest and then apply ChI-a concen-

tration prediction on these regions accordingly. This can not only 

improve the efficiency in data processing but also enhance the 

efficacy of the data prediction as ocean physicists can then com-

bine the information together in more effective interpreting and 

predicting the observed data.  

 

4. CONCLUSION 

 

In this paper, two tasks for multispectral ocean colour remote 

sensing are covered. For the first task, seedless region growing 

followed by region clustering is used for classification of coastal 

shelf regions. For the second task, SVM is used for predict of ChI-

a concentration from multispectral data. Promising results from 

real datasets are produced from the proposed approaches.  
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Fig. 2: Results of ChI-a concentration prediction from multispectral data.  
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