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ABSTRACT

SAR change detection is useful when emergency situations
occurred and weather conditions are unfavourable. In this
study, a change detection using multi-temporal polarimetric
UAVSAR data was investigated in urban environment. The
most robust polarimetric parameter was evaluated, and
change detction techniques using maximum likelihood ratio
and hyperbolic tanget function were applied to the selected
parameters. The comparison results with Google Earth’s
historical images showed a quite good agreement. A fitting
of hyperbolic tangent function to the multi-temporal
polarimetric parameters much reduced the false alarm rate,
and it also provide whether the building was constructed or
destructed and when the the changes occurred.

Index Terms— Change detection,
UAVSAR, urban, multi-temporal

polarimetry,

1. INTRODUCTION

Timely and reliable change information in urban areas is
essential to city administrators and authorities in charge for
planning and building safety. Thus, many techniques for
identifying these changes have been investigated and
developed. Optical remote sensing images have been mostly
used for the detection of changes such as new buildings,
roads, and even trees in the urban environment. Changed
and unchanged areas can be effectively discriminated by
optical multispectral data. However, such data are affected
by clouds and illumination conditions. Synthetic Aperture
Radar (SAR) is active microwave coherent imaging radar,
so it has all-weather and day-and-night imaging capability.
Furthermore, multi-polarization and multi-temporal SAR
imagery can be expected to play an important role in change
monitoring due to their unique scattering characteristics and
data availability in regular interval. The traditional change
detections have been carried out by applying the difference
or ratio of multi-acquisition, image transformation, and the
post-classification comparison [1-3]. More recent change
detections were based on expert systems, such as artificial
neural networks, fuzzy sets, and object-oriented approaches,
or employing a new parameterization of the algebraic space
[4]. These change detection algorithms were generally
worked well in most applications, but they still suffer from
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non-trivial false alarm rates in urban environment. The
objective of this study is to reduce false alarm rates and
develop a more robust and reliable change detection
algorithm in urban environment utilizing multi-temporal and
polarimetric SAR data.

2. DATASETS AND POLARIMETRIC PARAMETERS
2.1. Datasets

The data used in this study were acquired by the NASA/JPL
UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture
Radar), which is an L-band airborne, polarimetric, repeat-
pass, interferometric radar system [5]. The test site is the
city of Pasadena, California, USA. The imaged area is a
typical urban environment, consisting of buildings, roads,
parks, and cars. A total of 11 sequential acquisitions covers
a time interval of six years from 2009 to 2014. The nominal
flight headings and altitudes were almost identical for all
flights (the offsets between flight tracks were less than 10
m), because all the acquisitions of UAVSAR were supposed
to be used for repeat-pass interferometry. Thus, the local
incidence angles at fixed ground range positions can be
considered almost the same in polarimetric point of view.
The operational UAVSAR data products are provided in
cross products (HHHH, HVHV, VVVV, HHHV, HVHV,
and HVVYV), which can be imported in the covariance
matrix representation. The cross products (.grd files) are
given in geographic ground projection with pixel spacing of
5.556e-5 by 5.556e-5 degree (which corresponds to about
5.12 by 6.16 m at the latitude of 34 degree). The data are
multi-looked by 3 pixels in range and 12 pixels in azimuth.

2.2. Pre-processing

Although all polarimetric UAVSAR data are provided in
geographic coordinates (latitude and longitude), a perfect
matching between all corresponding pixels is required for
change detection. Thus, a recently acquired data was
selected as a reference image, and the rest images were co-
registered to the reference image. For this co-registration
process, 64 tie-points were generated to be used for
determining the coefficients of 4™-order mapping
polynomial between a target image and the reference image.
Each tie-point was selected using intensity cross-correlation
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between patch images (512X512) seized from the target
and reference images. The implementation of the cross-
correlation was conducted in power spectrum based on the
Wiener-Khinchin theorem. The mapping polynomial was
derived from only HHHH cross-product. The same mapping
polynomial was applied to the rest of UAVSAR cross-
products (HVHV, VVVV, HHHV, HVHV, and HVVV).
We also applied the complex sinc interpolation for the
resampling processing.

2.3. Polarimetric parameters

From the co-registered covariance matrixes [C3], more than
100 polarimetric parameters were extracted using
PolSARpro version 4.2. The extracted parameters include
intensities, intensity differences, phase differences, ratios,
eigen-value set parameters, engen-vector set parameters, and
polarimetric decompositions such as Freeman, VanZyl,
Yamaguch, and Krogager decompositions.

3. CHANGE DETECTION MODEL

We tested more than 100 polarimetric parameters to
evaluate which parameters are the most effective and robust
for change detection in urban environment. The evaluation
was conducted by calculating the separation of mean
difference between the changed area and unchanged area
with respect to the standard deviation in the unchanged area.
The equation for the separation test can be expressed as

follow:
[Axc—Axy | 1

Oy
where, Ax represents the difference of polarimetric
parameters between two acquisition times. The subscripts of
¢ and u represent the changed and unchanged area,
respectively. o is the standard deviation of the difference.
Fig. 1 shows results of the calculation for two regions. Both
regions include the destroyed buildings for future rebuilding,
but the buildings of first region are aligned in flight
direction while the buildings of second region are obliquely
aligned to the flight direction. The polarimetric parameters
showing a good separability (greater than 1.5) were
indicated in red (region 1) and green lines (region 2),
respectively. It was found that the polarimeric parameters
relevant to Shannon Entropy were most suited for change
detection than any other polarimetric parameters. Double
bounce component of polarimetric decompositions appears
to work well for the buildings that are rightly facing to the
radar look direction, but the rotated buildings were not
detected using the double bounce parameters. The Shannon
Entropy was not affected by the rotation of buildings, which
is not surprising because Shannon Entropy is mostly
determined by Eigen-values and they are all roll-invariant

parameters as explained below.
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Fig. 1. Evaluation of separation between changed and unchanged
areas for more than 100 polarimetric parameters.

In general, the Shannon Entropy (SE) can be calculated by
_ weTr(C3) |C3]
SE = 3log ("""} + log (27 ) @

Tr(C3)3
and the SE can be further developed as follow:
_ m3e3Tr(C3)% IC3]
E=log ( 27 27Tr(C3)3) &)
= log(m*e®|Cs)) 4

As seen in this equation, the SE is proportional to the
determinant of covariance matrix, which in turn, the
multiplication of Eigen-values:

|C3l =T1i4i . 4; = eigen(C3) (5)
Assuming that there are N time-series repeat-pass
polarimetric SAR data, as the UAVSAR does, a multi-
temporal polarimetric target vector is constructed by
gathering the target vectors obtained at different times, t;,
i=12..,N.

Oyr = [Qtl ‘Qtz 'QtN]T (6)

where, 2, =[S, (t) V255, (t) S,,,,(ti)]T and T represents the
transpose. Thus, the multi-temporal polarimetric covariance
matrix is as follows

Ciy Ciz2 - Cyy
I C . C

Cur—por = (-QMT-QITJT) = 21 22 :21 @)
Cy1 Cyz - Cyy

where, C; = (€2,42) and + represents conjugate.
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On the other hand, multi-temporal change detection is
usually conducted by assessing the variances of signals
obtained in different time. Diagonal elements of Eq. (7) are
the change of the stationary characteristic (i.e., the
fluctuations of the variance of the signal). If the target’s
signal obtained by multi-temporal polarimetric SAR is
stable (unchanged), then

Hy: €1 = Czz = - = Cyy (3)
The degree of changes (instability) can be measured using a
maximum-likelihood ratio (A) [6]:
_ maxzL(Z,.XZ)
- maxg, L(Z11,ENN)

©)

For the polarimetric SAR data case, the signal sample
variance is a (3%3) polarimetric coherency [T;] or
covariance matrix [C;], thus the maximum-likelihood ratio
of multi-temporal polarimetric SAR data is given by
_ I lcqlm

A= T (10)
where, c, =nlt2§":1nici,- and n, =YY ,n; . In Eq. (10), | |
represents the determinant of the matrix (which is similar
quantity of Shannon Entropy as shown in Egs. 2-4), and #;
represents the number of looks used in the estimation of the
covariance matrices (ex., n; = 3 X 12 for UAVSAR GRD
product).
This technique has already been adopted for time-frequency
analysis using a single full-polarization SAR data [7, 8]. In
this study, the technique was modified to apply for multi-
temporal and dual- or full-polarization SAR data. Because
full-polarization SAR data are not always available, in
particular for space-borne SAR systems, the change
detection with dual-polarization SAR data should be
evaluated.

4. APPLICATION RESULTS

The maximum likelihood ratio wusing polarimetric
covariance matrices was applied to multi-temporal
UAVSAR data acquired from 2009 to 2014 in Pasadena (11
acquisitions) (Fig. 2). This technique is generally working
well for detecting the constructed and destroyed buildings in
urban environment (Fig. 3). However, it also detects some
parking lots as changed places due to mobile cars (Fig. 3b).
Another weakness of this technique is that it is difficult to
know when the changes occurred.
In order to make more robust change detection (to rule out
seasonal changes or mobile cars) and to know the time of
change occurred, we employed a hyperbolic tangent
function to fit into the temporal variation of polarimetric
parameter (the determinant of covariance matrix) as below:
Iati =axtanh(t;—b) +c (11)
where, the coefficients of a, b, and ¢ are to be estimated
using least-square method. The changed pixels were
detected when |a| is greater than ¢ and r-square value is

greater than 0.5 (Fig. 4). The sign of @ can be used to
indicate whether the building was constructed or destroyed,
and b determines when the change occurred. The right
image of Fig. 4 represents the detected pixels overlay in
Google Earth (red and blue colors represent destroyed and
constructed buildings, respectively). Because of the
availability of multi-temporal UAVSAR data, the date of
building construction/completion can also be constrained
using the estimated coefficient of b (Fig. 5).

(a) (d)
Fig. 2. Change detection results in Pasadena city using multi-
temporal and polarimetric UAVSAR data. (a) Study site
represented by Freeman-Durden decomposition (red: double
bounce, green: volume scattering, and blue: odd bounce), (b)
detected changes using maximum-likelihood ratio (represented in
red pots)
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Fig. 3. Validation of change detection results using Google Earth’s

historical images. (a) Constructed buildings and (b) destroyed

buildings.

Because full-polarimetric SAR data are not always availabe,
we tested the change detection accuracy using dual-
polarization SAR data. tests were conducted with the same
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multi-temporal UAVSAR data, but with the use of [C,]
instead of [C;] (Fig. 6). The [C,] matrix was constructed for
the cases of HH & HV polarizations and HH & VV-
polarizations. We also tested the similar change detection
accuracy depending on the number of available multi-
temporal datasets. The evaluations were carried out by
comparing with the reference (the change detection reuslt of
using full-polarimetric and whole 11 multi-temporal datasets)
using the euqation below

_ #of incorrectly detected pixels (12)

#of correctly detected pixels

The comparison results showed that the number of multi-
temporal dataset was more sensitive to the detection
accuracy than the number of polarizations.

Fig. 4. Change detection results (overlaid on Google Earth image)
after fitting a hyperbolic tangent function. The red and blue dots
represent destroyed and constructed buidlings, respectively.

of Eq. 11. The comparison with the housing information provided
by a real estate website (zillow.com) showed a reasonable
agreement.
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Fig. 6. Dependency of change detection accuracy on the numbers
of polarization and multi-temporal datasets.

5. CONCLUSIONS

Robust change detection using multi-temporal polarimetric
UAVSAR data was proposed and tested in this study. The
Shannon Entropy and the determinant of polarimetric
covariance matrix appear to be the most robust parameter in
detecting changes in urban environment. A fitting of
hyperbolic tangent function to the polarimetric parameters
much reduced the false alarm detection rate, and further
provided inforamtions about the construction/destruction of
buildings and the date of change occurred. Dual-
polarizations with a proper number of multi-temporal SAR
datasets could be used for robust chage detection.
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