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ABSTRACT 
 
Sparse signals are commonly expected in remote 
sensing and Earth observation. Along with the 
significant development of the compressive sensing 
theory, exploitation of sparsity in remote sensing 
became a very relevant and active field. Breakthroughs 
are brought in different remote sensing problems 
covering synthetic aperture radar, multispectral and 
hyperspectral image analysis, and LiDAR. Tailored to 
this special session, this tutorial gives a review, to the 
best knowledge of the session chair, on recent 
advances in sparsity exploitation in remote sensing 
and Earth observation, regarding the theory, 
applications and future trends. 
 

Index Terms— sparsity exploitation, compressive 
sensing, remote sensing, synthetic aperture radar, 
hyperspectral imaging, optical remote sensing 
 

1. THEORY 

Prominent problems in remote sensing for earth 
observation are: 

− Notoriously ill-conditioned and undetermined 
inverse problems 
A typical example is super-resolution for radar, 
optical and hyperspectral imaging systems. In 
order to achieve good resolution and positioning 
accuracy the image to be reconstructed must be 
sampled much more densely than the resolution 
unit defined by the diffraction limit. This results in 
underdetermined systems.  

− Non-Gaussian statistics and a large amount of 
outliers 

Many remote sensing techniques suffer from 
unmodeled noise contributions (e.g. turbulent 
atmospheric and ionospheric delay) and a large 
amount of outliers (e.g. by multi-path effects). 
Typical examples are Lidar or persistent scatterer 
interferometry. 

− Expensive sensors and high data rate 
Advanced applications call for sensors with higher 
and higher resolution which leads to high 
requirements on the involved hardware and 
software. E.g. for radar systems, high pulse 
repetition frequency is required to sample higher 
resolution data which will lead to expensive 
sensors and renders the data rate high, although 
the information content does not grow 
accordingly. 

The concept of sparsity offers a solution to many of 
these problems.  
 
Let x be the signal to be reconstructed with a length of 
L and y be the measurement vector having N elements. 
The remote sensing measurement acquisition can be 
generally modeled as: 

( )= +y F x ε                        (1) 

Where ( )⋅F is the – possibly nonlinear – forward 
model and ε is the measurement noise. Linearizing the 
underlying measurement model yields:  

= +y Κx ε                  (2) 

Where K is the sensing matrix (i.e. the Jacobian of F). 
Often the system model of eq.2 is an underdetermined 
inverse problem, i.e. N<L, and appropriate 
regularization is required in order to obtain a robust 
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estimate of x. If x is sparse, i.e. compared to its length 
L it has only few non-zero elements or its projection 
onto an orthogonal basis Φ  (e.g. Fourier, wavelet) has 
only few non-zero coefficients, this sparsity property 
can be used as a strong prior for regularizing the 
underdetermined inverse problem. Among the 
infinitely many solutions of the (noise-free) 
underdetermined system, the sparsest solution, i.e. the 
solution with ˆΦ x  having the minimum L0 norm, is 
assumed to be the most probable one. Since the 
measurements are contaminated with noise, the L0 
norm is jointly minimized with the classical residual 
term: 

 { }2
02 0

ˆ arg min λ= − +
x

x y Kx Φ x  (3) 

where 0λ  is a regularization parameter balancing 
sparsity and residuals (noise). Eq.3 gives the 
theoretically most probable sparse solution. However, 
this optimization task is N-P hard, and hence is not 
applicable in practice. It can also give multiple and 
unrealistic high-energy solutions. A practical approach 
provided by compressive sensing (CS) is that under 
certain constraints [1], the L0 norm prior used in eq.1 
can be well approximated by the L1 norm. This leads 
to an optimization task that mixes L2 and L1 
expressions in the form: 

{ }2
12 1

ˆ arg min λ= − +
x

x y Kx Φ x  (4) 

This approximation renders the problem convex and 
solvable by linear programming. 

Besides this L2 and L1 norm minimization several 
other minimizers are proposed in sparse signal 
representation, e.g. for robust PCA computation [2], 
exploiting joint sparsity [3], etc. 
 

2. APPLICATIONS 

In the recent years, pioneer research has been carried 
out to apply this model for solving remote sensing 
problems that lead to exciting results. Selected remote 
sensing problems addressed by the community are as 
follows. 

− SAR imaging [4]–[6]: Modern SAR sensors 
provide very high spatial resolution. This high 
resolution reduces the information content per 
pixel, and hence renders the signal medium sparse 

in azimuth and range. This is particularly true for 
sparse scenes, e.g. in coastal areas [7].  

− Optimizing remote sensing systems [8]: Sparse 
signals can be well reconstructed from much 
fewer samples than the Shannon sampling theory 
requires. A straightforward application is to use 
the compressive sensing paradigm to design 
innovative imaging system aiming at acquiring 
much less data in an optimum way. 

− SAR tomography (TomoSAR) [9]–[13] : 
TomoSAR uses stacks of repeat-pass SAR 
acquisitions to reconstruct the reflectivity of the 
scattering objects along elevation for every 
azimuth-range pixel. For certain imaging 
geometries, e.g. in urban environment, the signal 
is sparse in elevation and there are typically only 
0~4 scatterers inside an azimuth-range pixel.  

− Ground Moving Target Identification (GMTI) 
[14]: Signatures of moving targets in radar are in 
fact chirp signals with different Doppler and chirp 
rates depending on the velocities of the targets. 
Compared with the stationary background, they 
are sparse signals.  

− Inverse SAR (ISAR) [15], [16]: An ISAR system 
illuminates a maneuvering target and collects a 
number of pulses coherently. The image of the 
interesting – mostly military – target is generally 
constructed by limited strong scattering centers, 
representing strong spatial sparsity. 

 
Further applications in radars [17], [18] include, e.g. 
multiple-input/multiple-output (MIMO) radar [19], 
through-the-wall radar [20] and ground penetrating 
radar [21]. 
 
− Pan-sharpening and hyperspectral image 

enhancement [22]–[28]: The goal of both pan-
sharpening and hyperspectral image enhancement 
is to fuse two images which have high spatial and 
high spectral resolution, respectively. Sufficiently 
small images patches normally have a sparse 
representation in overcomplete dictionaries trained 
from the data. 

− Spectral unmixing for hyperspectral data [29]–
[31]: The goal of spectral unmixing is to identify 
the materials inside a hyperspectral image pixel. 
Typically there are only few material classes 
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(endmembers) inside a pixel compared to the 
prodigious endmember spectral library. 

− Dimension reduction of hyperspectral imagery: 
Hyperspectral data are characterized by very rich 
spectral information, which makes them apt to 
detecting targets of interest, but also introduce 
drawbacks caused by their high dimensionality. A 
high dimensional hyperspectral data cube can be 
decomposed into a low-rank matrix corrupted by a 
sparse error matrix [32].  
 

Further applications in optical remote sensing include, 
e.g. classification [33], target detection [34]–[36], 
anomaly detection and hyperspectral compressive 
sensing [37]. 
 
− Lidar full waveform analysis [38]: Lidar returns 

are the convolution of the pulse shape and the 
reflectivity profile. High range resolution requires 
deconvolution, which can be regularized by the 
sparsity assumption. 

− 3D water vapor tomography using GNSS and 
InSAR [39]: As the precipitable water vapor 
(PWV) deduced from GNSS wet delays and the 
estimated InSAR wet delays only yield integrated 
information in 2D, this calls for tomographic 
approaches to reconstruct 3D water vapor fields 
which can be sparsely represented in, e.g., a 
cosine transform basis.  
 

In [40], highlight results from selected applications 
and overview on sparse reconstruction and 
compressive sensing in various remote sensing 
problem will be presented.  
 

3. FUTURE TRENDS 

After the first harvesting in sparsity exploitation in 
remote sensing community, further developments 
mainly lie in answering the following questions: 
 
− Instead of deriving the limits of sparse remote 

sensing by giving SNR, N and mathematic 
conditions, can we change the perspective, i.e., 
starting from the practical scenarios and user 
specifications? 

− How do intelligent compressive remote sensing 
systems look like that guarantee high probabilities 
of precise signal recovery? 

− For practical problems, how to decide for 
conventional methods or CS based algorithms that 
bring the superior performance but relatively high 
computational cost? 

− Where are further sparse signals or smart sparse 
signal representations to be exploited in remote 
sensing and Earth observation? 
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