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ABSTRACT
In many applications, such as image retrieval and change
detection, we need to assess the similarity of two statistical
models. As a distance measure between two probability den-
sity functions, Kullback-Leibler divergence is widely used for
comparing two statistical models. Unfortunately, for some
models such as Gaussian Mixture Model (GMM), Kullback-
Leibler divergence has no analytically tractable formula.
We have to resort to approximation methods. In this paper,
we compare seven methods, namely Monte Carlo method,
matched bond approximation, product of Gaussian, variation-
al method, unscented transformation, Gaussian approxima-
tion, and min-Gaussian approximation, for approximating the
Kullback-Leibler divergence between two Gaussian mixture
models for satellite image retrieval. Two image retrieval ex-
periments based on two publicly available datasets have been
performed. The comparison is carried out in terms of both
retrieval performance and computational time.

Index Terms— Gaussian Mixture Model (GMM), Kullback-
Leibler Divergence, Image Retrieval.

1. INTRODUCTION

In Earth Observation (EO), a large amount of high-resolution
satellite images are available at ground segments. Fast brows-
ing and automatic interpretation of large data volumes is
very challenging. Thus, content based image retrieval has
been developed since years to solve this problem, such as
the Knowledge-driven Information Mining (KIM) system
[1] and the Geospatial Information Retrieval and Indexing
(GeoIRIS) system [2]. To retrieval images, we have to solve
two fundamental problems. The first problem is to find a
method to describe the image content. The second problem
is to compute the similarity values between a query and the
remaining images in a database based the selected image
content representation. Statistical feature space modeling [3]
is an important method for image content representation. In
this kind of methods, first we extract some local features from
an image and then assume a parametric or semi-parametric

model for the feature space. Next, we learn the parameters
governing this model. This learned model can be considered
as a statistical representation of the image content. Gaus-
sian mixture model (GMM) is a popular choice due to its
flexibility and the availability of Expectation-Maximization
algorithm for parameter estimation. Gaussian mixture models
were used in [4] for modeling the time-localized feature space
and the dynamic feature space, where model selection was
approached by the minimum description length principle.

To address the second problem, we have to find a sim-
ilarity measure between two statistical models. The Kull-
back–Leibler divergence [5], defined as

D(X||Y ) =
∑
x

pX(x) log
pX(x)

pY (x)
,

is widely used as a similarity measure between two discrete
probability distributions pX(x) and pY (x). However, for
some parametric models, it is hard to compute the integral
involved in computing Kullback-Leibler divergence since it
is not analytically tractable, which is the case for GMMs.
Therefore, we have to resort to some kind of approximations
to the Kullback-Leibler divergence between two GMMs. In
the literature, there are a number of methods addressing this
issue. Thus, in this paper, we compare seven methods for
approximating the Kullback-Leibler divergence between two
GMMs from a point view of content based satellite image
retrieval.

2. KULLBACK-LEIBLER DIVERGENCE
APPROXIMATION METHODS

2.1. Gaussian Mixture Model

A random variable X follows a Gaussian mixture distri-
bution if its probability density function can be written
as pX(x) =

∑M
i=1 πiNi(X;µi,Σi), where πi is the pri-

or probability of each component and Ni(X;µi,Σi) is a
multivariate Gaussian distribution with a mean vector µi

and a covariance matrix Σi. To apply this model to a fea-
ture space, we have to estimated the involved parameters
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Θ = (α1,µ1,Σ1, ..., αM ,µM ,ΣM ) using a set of training
dataX = (x1,x2, ...,xN ). The standard method to estimate
the parameters of a GMM is maximum likelihood estima-
tion which is usually solved efficiently by the Expectation-
Maximization (EM) algorithm [6]. However, we need to
choose an appropriate number of Gaussian components be-
fore applying the EM algorithm to parameter estimation.
To solve this problem, a number of different model selection
methods, such as Bayes Information Criterion (BIC) [7], have
been proposed in the literature. In this letter, BIC defined by
(1) is used for choosing the number of Gaussian components.

BIC(Θ) = −2 logL(Θ|X) +K logD (1)

L(Θ|X) is the likelihood function, K is the number of
parameters, and D is the dimensionality of the feature vec-
tor. If there is only one Gaussian component pX(x) =
N (X;µX ,ΣX) and pY (x) = N (Y ;µY ,ΣY ) in each G-
MM, the Kullback-Leibler divergence turns down to that
between two Gaussian distributions. Unfortunately, if there
are more than one Gaussian component, Kullback-Leibler
divergence is not analytically tractable. Thus, we have to
resort to approximation methods.

2.2. Approximation Methods

Given two GMMs pX(x) =
∑M

i=1 πiNi(X;µi,Σi) and
pY (x) =

∑N
j=1 αjNj(Y ;µ′

j ,Σ
′
j), our goal is to compute

the Kullback-Leibler divergence between them. The meth-
ods we compared for approximation are presented as fol-
lows. In the following, for the brevity of presentation, we
denote the Gaussian components of pX(x) and pY (x) by
piX(x) = Ni(X;µi,Σi) and pjY (x) = Nj(Y ;µ′

j ,Σ
′
j).

2.2.1. Monte Carlo Sampling

The fundamental idea is to draw a large number of samples
{xk}nk=1 from pX(x) and use these samples to replace the
numerical integral by a summation over all samples. Thus,
the Kullback-Leibler divergence can be approximated as

DMC(X||Y ) =
1

n

n∑
i=1

(
log pX(xi)− log pY (xi)

)
(2)

If the number of samples used for approximation goes to in-
finite, the approximation will be very close to the true value
of Kullback-Leibler divergence. Practically, we need to draw
a large number of samples {xk}nk=1 from a GMM. First we
select a Gaussian component according to their prior distribu-
tion πi. Then we draw a sample xk from the selected Gaus-
sian component Ni(X;µi,Σi). We repeat this procedure for
a large number of times to obtain enough samples. The Monte
Carlo method is the only method that can really estimate the
Kullback-Leibler divergence provided we have a large num-
ber of independent and identically distributed samples.

2.2.2. Gaussian Approximation

This method first approximates pX(x) and pY (x) by t-
wo Gaussian distributions p̂X(x) = N (X;µX ,ΣX) and
p̂Y (x) = N (Y ;µY ,ΣY ). The mean and covariance ma-
trix can be estimated by µX =

∑i=1
M πiµi and ΣX =∑i=1

M πi(Σi + (µi −µX)(µi −µX)T ). Then the Kullback-
Leibler divergence between pX(x) and pY (x) can be approx-
imated by that of these two Gaussian distributions. Another
popular choice of Gaussian approximation is to use the min-
imum Kullback-Leibler divergence between components of
the two GMMs.

2.2.3. The Product of Gaussians Approximation

This method [8] is derived based on an upper bound on the
likelihood resulted from Jensen’s inequality. Since likelihood
and Kullback-leibler divergence have the following relation

D(X||Y ) = EpX(x)[log pX(x)]− EpX(x)[log pY (x)], (3)

where E[·] denotes the expectation, Kullback-Leibler diver-
gence can be approximated by an estimate of the likelihood.
Based on the Jensen’s inequality f(E[x]) ≤ E[f(x)], an up-
per bound of likelihood can be derived as (4),

EpX(x)[log pY (x)] ≤
M∑
i=1

πi log

N∑
j=1

αjCij (4)

Cij =
∫
piX(x)pjY (x)dx is the normalization constant of

a product of two Gaussians that can be found from the ap-
pendix. Therefore, the Kullback-Leibler divergence can be
approximated using the above upper bound

DPoG(X||Y ) =

M∑
i=1

πi log

∑N
j=1 πjCij∑N
j=1 αjCij

(5)

2.2.4. The Unscented Transformation

The unscented transform [9] is a method to estimate an expec-
tation Ef(x)[h(x)] of a function h(x) with a probability den-
sity function f(x). Following the same idea as Monte Carlo,
the expectation can be estimated by a sample xi. However,
we do not have to draw a large number of samples. Instead,
we select only 2D ”sigma” points {xk}2Dk=1 of the distribution
f(x). Thus, the expectation can be written as Ef(x)[h(x)] =
1
2D

∑2D
k=1 h(xk). One popular choice of the sigma points for

a Ni(X;µi,Σi) is xi,k = µi +
√
Dλi,kei,k and xi,D+k =

µi−
√
Dλi,kei,k with λi,k and ei,k being the eigenvalues and

eigenvectors of the covariance matrix Σi. Therefore, we can
draw a sample xi,k from each Gaussian component of pX(x)
and use them to approximate the Kullback-Leibler divergence
as follows.

Dustd(X||Y ) =
1

2D

M∑
i=1

πi

2D∑
k=1

log
pX(xi,k)

pY (xi,k)
(6)



2.2.5. The Matched Bound Approximation

The matched bound approximation [9] computes the Kullback-
Leibler divergence by minimizing a matching function that
finds the closest Gaussian component of pY (x) to that of
pX(x). It has two steps. The first step is to find the closes
Gaussian component of pY (x) to each component of pX(x).
Formally, we solve the following minimization problem (7)
for each piX(x).

m(i) = argmin
j
D(piX(x)||pjY (x))− logαj (7)

Then we use the matched pairs of Gaussian components to
approximate the Kullback-Leibler divergence as follows

DM (X||Y ) =

M∑
i=1

πi

(
D(piX(x)||pm(i)

Y (x)) + log
πi

αm(i)

)
(8)

2.2.6. The Variational Approximation

Variational approximation [8] is based on a variational lower
bound on the likelihood EpX(x)[log pY (x)] obtained by in-
troducing a set of variational parameters φj|i > 0 such that∑

j φj|i = 1. Based on the Jensen’s inequality, we have the
following lower bound:

EpX(x)[log pY (x)] = EpX(x)

[
log

N∑
j=1

αjp
j
Y (x)

]

≥
M∑
i=1

N∑
j=1

πiφj|i

(
log

αj

φj|i
+ Epi

X(x)[log pjY (x)]
)
(9)

We can maximize the lower bound in (9) and solve for φj|i,
which is given as

φ̂j|i =
αj exp

(
−D(piX(x)||pjY (x))

)
∑N

j=1 αj exp
(
−D(piX(x)||pjY (x))

) (10)

Then the lower bound can be computed by substituting
(10) into (9). Likewise, we can define a lower bound on
EpX(x)[log pX(x)] by introducing another set of variational
parameters. Finally the Kullback-Leibler divergence between
pX(x) and pY (x) can be approximated as (11)

Dv(X||Y ) =

M∑
i=1

πi log

M∑
j=1

πj exp
(
−D(piX(x)||pjY (x))

)
N∑
j=1

αj exp
(
−D(piX(x)||pjY (x))

)
(11)

3. EXPERIMENTS AND DISCUSSION

Two datasets are used for evaluation. The first one is the UC
Merced land use dataset [10]1. It contains contain 18 classes
of scenes. Each class has 100 images with a size of 256 ×
256 pixels. The second is the Wuhan high resolution satellite
scene dataset 2. This dataset contains contain 18 classes of
scenes and for each class, there are 50 samples with a size of
600× 600 pixels.
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Monte Carlo, AUC = 0.21511
Matched Bound Approximation, AUC = 0.21578
Product of Gaussians, AUC = 0.19866
Variational Approximation, AUC = 0.21823
Unscented Transformation, AUC = 0.21434
Gaussian Approximation, AUC = 0.2089
min−Gaussian Approximation, AUC = 0.16326

Fig. 1. Average AUC of the seven approximation methods.
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Monte Carlo, AUC = 0.2736
Matched Bound Approximation, AUC = 0.27652
Product of Gaussians, AUC = 0.26509
Variational Approximation, AUC = 0.28001
Unscented Transformation, AUC = 0.27378
Gaussian Approximation, AUC = 0.28091
min−Gaussian Approximation, AUC = 0.21442

Fig. 2. Average AUC of the seven approximation methods.

We use each image as a query and search for similar im-
ages among the remaining images. For each query, we first
learn a GMM using the RGB pixel values based on the algo-
rithm presented in section 2.1 which can automatically esti-
mate the number of components. Then we use the estimat-
ed parameters and the seven methods for approximating the
Kullback-Leibler divergence between two GMMs as a sim-
ilarity measure. To evaluate, we compute the precision and
recall curve. The area under this curve (AUC) is also com-
püuted and compared. In addition, we also compare the com-

1The data is available at http://vision.ucmerced.edu/
datasets/landuse.html

2The data is available at http://dsp.whu.edu.cn/cn/staff/
yw/HRSscene.html

http://vision.ucmerced.edu/datasets/landuse.html
http://vision.ucmerced.edu/datasets/landuse.html
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Table 1. Average AUC [%] and the average CPU time of the seven methods.
Methods Monte Carlo Matched Bound Prod. of Gauss. Variational Unscented Gaussian min-Gauss.

Average AUC [%] 27.36 27.65 26.51 28.00 27.38 28.09 21.44
CPU time [s] 0.4439 0.0303 0.0468 0.0447 0.0330 0.0020 0.0217

Table 2. Average AUC [%] and the average CPU time of the seven methods.
Methods Monte Carlo Matched Bound Prod. of Gauss. Variational Unscented Gaussian min-Gauss.

Average AUC [%] 21.51 21.58 19.87 21.82 21.43 20.89 16.33
CPU time [s] 0.2157 0.0100 0.0150 0.0358 0.0297 0.0014 0.0265

putational time. For the method of Monte Carlo sampling, we
use a sample of 80, 000 points for approximation.

The results of the comparison using the first dataset (UC
Merced land use dataset) is shown in Fig. 1. The average
AUC and CPU time are shown in Table. 2. From the result-
s, we can observe that the variational approximation is the
best one with an average AUC of 0.2182. Matched bound ap-
proximation ranks second but with a much faster speed than
the variational method. In addition, although we used a large
sample of 80, 000 points in Monte Carlo sampling, they are
still not enough if we compare it with the variational approx-
imation. Furthermore, Monte Carlo method is computation-
ally very slow, which limits its use in some applications such
as change detection because it has to be computed for each
pixel. min-Gaussian is the most inferior method and Gaus-
sian approximation is the fastest one. Additionally, we can
also observe that the matched bound approximation and the
unscented transformation have similar

The results of the experiments using the second dataset
(Wuhan High-resolution Satellite Scene Dataset) is presented
in Fig. 2. Similar as the previous experiment, min-Gaussian
performs least among the seven methods. However, Gaussian
approximation performs best with an average AUC of 0.2687
and has the lowest computational complexity of 0.0020. The
main reason is that, for some homogeneous classes such as
forest, meadow, desert, etc., the assumed GMM distribution
boils down to a Gaussian distribution. The variational method
performs only slightly worse than the Gaussian approxima-
tion. As in the first experiment, we can also observe that the
matched bound approximation and the unscented transforma-
tion have similar performances that are only slightly lower
than the variational approximation method. but they can be
computed faster than the variational method. The method of
product of Gaussian performs similarly as in the first experi-
ment.

4. CONCLUSION

In this paper, we compare seven methods for approximat-
ing the Kullback-Leibler divergence between two Gaussian
mixture models for satellite image retrieval. Two image re-
trieval experiments based on two publicly available datasets
have been performed. In principle, Monte Carlo method can
achieve high accuracy provided a large number of samples are

available. However, practically, it is not applicable in many
cases due to its high computational complexity. Variational
approximation seems a good compromise between computa-
tion and accuracy. If the images are homogeneous, Gaussian
approximation will be a good choice. The matched bound
approximation and the unscented transformation performs s-
lightly worse than the variational method. min-Gaussian is
generally not a good choice.
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