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ABSTRACT 

Manifold learning has been successfully applied to 

hyperspectral dimensionality reduction to embed nonlinear 

and nonconvex manifolds in the data. However, 

dimensionality reduction by manifold learning is sensitive to 

non-uniform data distribution and the selection of neighbors. 

To address the two issues to some extents, in this work a 

new manifold framework based on locality linear embedding 

(LLE), namely local normalization and local feature 

selection (LNLFS), is proposed. Classification is explored as 

a potential application to validate the proposed algorithm. 

Classification accuracy using data obtained using different 

dimensionality reduction methods is evaluated and 

compared, while applying two kinds of strategies for 

selecting the training and test samples: random sampling and 

region-based sampling. Experimental results show the 

classification accuracy obtained with LNLFS is superior to 

state-of-the-art dimensionality reduction methods. 

Index Terms—hyperspectral image, dimensionality 

reduction, manifold learning, local normalization, local 

feature selection, non-uniform data distribution 

1. INTRODUCTION 

Hyperspectral data is characterized by very rich spectral 

information, which enables us to detect targets of interest, 

but also introduces drawbacks caused by its high 

dimensionality. As a result, dimensionality reduction is an 

important task in hyperspectral data processing. For this 

purpose, unsupervised manifold learning methods based on a 

graph embedding framework, such as Isomap [1] and LLE 

[2], are widely explored [3-5] to embed nonlinear and 

nonconvex manifolds in hyperspectral data. Neighborhood 

selection plays an important role in local-graph-based 

manifold learning. The k-nearest neighbor algorithm is 

commonly used for selecting neighbors using distance 

metrics such as the Euclidean distance, the heat kernel, and 

the spectral angle distance (SAD). A key limitation of this 

approach is that it ignores a non-uniform data distribution, 

as is always the case in real hyperspectral data. This 

limitation results in inaccurate calculation of local properties 

and thus degrades the performance of manifold learning.  

This work aims at a robust neighborhood selection 

method to obtain accurate and robust feature representation 

via manifold learning. Two main technical contributions 

proposed in this paper are: 1) an idea of local data 

normalization has been embedded into the original LLE 

framework to transform local data points to a more isotropic 

distribution (i.e. to emphasize spectral features); 2) a novel 

robust neighbors selection based on local feature matching 

has been developed to take non-uniform data distributions 

into consideration. 

2. METHOLODGY 

2.1 Traditional LLE 

Figure 1 shows the main procedures of the traditional LLE 

algorithm, more specific speaking in the following: 

Step 1. Select the neighbors for each point in the spectral 

domain. 

Step 2. Utilize the neighbors of each point to describe the 

local geometric structure, denoted as W. 

Step 3. Preserve the local geometric structure (W) in the 

low dimensional space. 

Step 1 plays a very important role in the LLE framework. 

That is to say, the performance of dimensionality reduction 

mainly depends on the neighborhood selection. The k-means 

algorithm with a distance metric is widely used for the 

neighborhood selection.  

Although the Euclidean distance or the heat kernel is 

common for calculating the distance between samples [2,4], 

such distance metrics in the reflectance or radiance domain 

are highly influenced by spectral variability due to 

environmental conditions (e.g. illumination and atmospheric 

conditions) and instrumental configurations (e.g. sensor 

noise) rather than spectral features. SAD is more suitable for 

selecting spectrally meaningful neighbors in hyperspectral 

data while mitigating the effects of variable illumination [3]. 



 

Figure 1 The flowchart of the LLE algorithm  

2.2 Local Normalization and Local Feature Selection 

(LNLFS) 

We mainly focus on how to select neighbors for each 

point taking into account non-uniform local data 

distributions. To this end, we propose a local normalization 

and local feature selection (LNLFS) method, which fully 

takes into consideration the non-uniformity of local data 

distribution and the robustness of local neighbors selection 

in order to obtain a good representation of local geometric 

structure.  

The idea of data normalization is embedded into the 

original LLE framework, which can effectively make data 

distribution more isotropic in the local region, thereby 

obtain a more accurate representation of local geometric 

structure.  

To handle the locally non-uniformly distributed data and 

further obtain robust neighbors, we develop an effective 

neighbors selection method based on local feature matching. 

It  is composed of four core steps: 1) choose a coarse 

neighborhood for a certain target point in the normalized 

spectral domain; 2) calculate local features based on the 

similarity of local manifold structures for all selected 

neighbors; 3) utilize the KL divergence to measure the 

similarity with respect to the calculated local features; 4) 

select a sub-neighborhood with high similarities as the new 

neighborhood for that target point. Local feature matching 

and two-step neighborhood selection are inspired by 

previous works in manifold alignment [6] and clustering [7], 

respectively. 

Compared to strategies of neighbors selections in the 

previous manifold methods, there are two edges in the new 

neighborhood obtained with the proposed method as follows: 

(1) it is based on matching the local features rather than 

simply measuring a distance metric, therefore is less 

sensitive to the distribution of original data; (2) it explores a 

larger neighborhood, and hence makes the local structure 

calculation more robust. Figure 2 shows the flowchart of the 

proposed manifold framework and more details 

corresponding to the Figure 2 are given below. 

Step 1. Select Neighbors: before neighbors selection, a 

normalization for the spectral feature is effective to mitigate 

the effects of variable illumination, making the spectral 

feature measured in the same level or unit by using the 

formula as follows: 
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where 
p

X  is the spectral signature, D stands for the number 

of the spectral bands, N

p
X  is the own normalized spectral 

feature. Here we use SAD to measure the distance between 

spectral features and then select the K nearest neighbors: 
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where N

p
X and N

q
X are arbitrarily spectral features in the 

spectral domain, and N N

p q
X X . 

Step 2. Local Normalization (LN): the idea of 

normalization is explored before computing the local 

geometric structure: 
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where N

p
X  is the normalized spectral feature itself, N

j
X  

stands for the K nearest neighbors of N

p
X . [ , ]N N N

r p j
X X X  and 

LN

rX  can be also written in the form of 

 , , 1,2,......,j KLN LN

p j
X X ,which stands for the local 

normalized spectral features. 

Step 3. Local Feature Selection: this step is divided into 

two parts to describe: 

First part: define the local feature local

p
F for the point p in the 

spectral domain shown in the following: 
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Second part: feature matching using KL divergence (KLD) 



Figure2 The flowchart of the proposed LNLFS algorithm 
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where local

p
F and local

j
F  stand for the local features of point p 

and the neighbors of point p in the spectral domain, 

respectively, and  is a penalty parameter only to keep a 

balance between  ||KLD local local

p j
F F  and  ||KLD local local

j p
F F . 

So the final matching distance f
d  between any local 

features can be expressed as  
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Then choose k neighbors with the small f
d  value from the 

K nearest neighbors. Therefore, the new neighbors 
p

W  for 

certain point can be updated using the formula as follows: 
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Step 4. Compute Weights:  
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Step 5. Calculation of Embedding: 
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where the solution Y is the representation of dimensionality 

reduction for the original hyperspectral data. 

3. EXPERIMENT 

In order to validate the performance of LNLFS, we explored 

classification as a potential application and evaluate the 

classification accuracy accordingly. Here, we adopted two 

sampling strategies to select training samples and test 

samples: one is random sampling which is a common way 

for the validation of hyperspectral classification and another 

is a region-based sampling which is more challenging as 

well as an effective way to check the robustness of the 

proposed method. In addition, we used the AVIRIS Indian 

Pines dataset (200 bands without water absorption bands) 

for the experiments mentioned above. The Indian Pines 

dataset has 16 classes with greatly different numbers of total 

samples as shown in the Table 1. The data include nonlinear 

and nonconvex manifolds with non-uniform data distribution 

due to multiple scattering, bidirectional reflectance 

distribution function effects, variable illumination conditions, 

and sensor noise. Therefore the Indian Pines is a suitable 

dataset to evaluate the performance of our method. 

Table 1 The number of train samples and test samples for each 

class 
NO. Class Name Total Training Testing 

1 Corn-Notill 1434 50 1384 

2 Corn-Mintill 834 50 784 

3 Corn 234 50 184 

4 Grass-Pasture 497 50 447 

5 Grass-Trees 747 50 697 

6 Hay-Windrowed 489 50 439 

7 Soybean-Notill 968 50 918 

8 Soybean-Mintill 2468 50 2418 

9 Soybean-Clean 614 50 564 

10 Wheat 212 50 162 

11 Woods 1294 50 1244 

12 Bldg-Grass-Tree-Drives 380 50 330 

13 Stone-Steel-Towers 95 50 45 

14 Alfalfa 54 15 39 

15 Grass-Pasture-Mowed 26 15 11 

16 Oats 20 15 5 

Figure 3 and Figure 4 shows the classification accuracy 

using the different methods including original spectral 

feature, principle component analysis (PCA), LLE with the 

Euclidean distance [4], Laplacian Eigenmaps (LE), local 

normalization (LN), and LNLFS, under the different 

sampling strategies. In addition, we only use the 1 nearest 

neighbor based on the Euclidean distance as a classifier. We 

can see clearly from the Figure 3 that in the dataset with 

non-uniform data distribution and variability, LN and 

LNLFS methods obtain the better classification results 

compared to the original spectral feature and LLE and LE, 

and LNLFS is obviously superior to the LN as well. 

However, LLE and LE are sensitive to the variability of data. 

Due to the spectral variability in the data, such as noise and 

shadow, etc., their performances are even inferior to those 

using directly original spectral feature and PCA. 

Furthermore, in order to validate the effectiveness and 

robustness, we used another strategy based on the region to 



obtain training samples for classification. As shown in the 

Figure 4, our method LN and LNLFS are still superior to 

other methods, though their classification accuracy degrades 

as expected. In addition, we can also notice from the figures 

that the classification accuracy using PCA based on linear 

dimensionality reduction is extremely similar with that 

directly using the original spectral feature under the different 

sampling strategies, which means that there is not an 

effective improvement in performance after using linear 

dimensionality reduction method, while the proposed 

method based nonlinear has better performance, which is 

more suitable for the hyperspectral data dimensionality 

reduction due to the special nonlinear property of the 

hyperspectral data. 

   
(a)                                                                              (b)                                                                                   (c) 

Figure 3 Performance comparison: Classification accuracy as a function of data dimension using randomly sampling (our proposed method: 

LNLFS).  

(a)-(c) are the results using different number of neighbors (k=20, 50, 80) respectively. 

   
(a)                                                                              (b)                                                                                    (c) 

Figure4 Performance comparison: Classification accuracy as a function of data dimension using region-based sampling (our proposed 

method: LNLFS).  

(a)-(c) are the results using different number of neighbors (k=20, 50, 80) respectively. 

4. CONCULSION 

In this work, a novel neighborhood selection method for 

LLE – the LNLFS method – is developed to handle non-

uniform data distribution in nonlinear and nonconvex 

manifolds of hyperspectral data for dimensionality reduction. 

Compared to other state-of-the-art methods, the proposed 

method achieves better performance in terms of 

classification accuracy. In the future, we will further focus 

on how to better describe the local geometric structure and 

how to automatically obtain the number of neighbors, 

thereby try to develop a more automated framework. 
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