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Earth Science Informatics 
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Goals: to make this process efficient, address existing gaps/hurdles, 
seamlessly integrate new emerging technology, and enable new 
research capabilities  
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Outline 

1.  Project Overview 
2.  Data Curation Service  
3.  Rules Engine 
4.  Application (with Demo)  
5.  Image Retrieval Service 
6.  Summary 
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Part 1: Project Overview 
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Motivation 

•  Data preparation steps are cumbersome and 
time consuming 
o  Covers discovery, access and preprocessing  

•  Limitations of current Data/Information Systems 
o  Boolean search on data based on instrument or 

geophysical or other keywords 
o  Underlying assumption that users have sufficient 

knowledge of the domain vocabulary 
o  Lack support for those unfamiliar with the domain 

vocabulary or the breadth of relevant data available  5 
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Earth Science Metadata: 
Dark Resources 

•  Dark resources - information resources that organizations 
collect, process, and store for regular business or operational 
activities but fail to utilize for other purposes 
o  Challenge is to recognize, identify and effectively utilize these 

dark data stores  

•  Metadata catalogs contain dark resources consisting of 
structured information, free form descriptions of data and 
browse images. 
o  NASA’s Common Metadata Repository (CMR) holds >6000data 

collections, 270 million records for individual files and 67 million 
browse images.   

6 

Premise: Metadata catalogs can be utilized beyond their original 
design intent to provide new data discovery and exploration 
pathways to support science and education communities.   



Project Goals 
•  Design a Semantic Middleware 

Layer (SML) to exploit these 
metadata resources 
o  provide novel data discovery and 

exploration capabilities that 
significantly reduce data 
preparation time.   

o  utilize a varied set of semantic 
web, information retrieval and 
image mining technologies.  

•  Design SML as a Service Oriented 
Architecture (SOA) to allow 
individual components to be 
used by existing systems 
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Use Case: 
Find Interesting Events from Browse 

Images 

Example: MODIS-Aqua 2008-05-03 18:45 UTC   
Band 1-4-3 (true color) Band 7-2-1 LST 

Chaitén Volcano Eruption 
Eruption Time period:  May 2 – Nov 2008 
Location:  Andes  region, Chile ( -42.832778, 
-72.645833) 
 Image Retrieval Service can be used to find 

volcanic ash events in browse imagery 



Suggest Relevant Data 
Total SO2 mass:   
e.g. Chaitén is 10 (kt) =(kilotons ) , (1kt= 1000 metric tons) 
ftp://measures.gsfc.nasa.gov/data/s4pa/SO2/MSVOLSO2L4.1/
MSVOLSO2L4_v01-00-2014m1002.txt 
 
Daily SO2:  
OMI/Aura Sulphur Dioxide (SO2) Total Column Daily L2 Global 0.125 deg 
http://disc.sci.gsfc.nasa.gov/datacollection/OMSO2G_V003.html  
 
Calibrated Radiances:  
MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 1km 
http://dx.doi.org/10.5067/modis/myd021km.006  
 
Aerosol Optical Thickness: 
MODIS/Aqua Aerosol 5-Min L2 Swath 10km  
http://modis-atmos.gsfc.nasa.gov/MOD04_L2/  
SeaWiFS Deep Blue Aerosol Optical Depth and Angstrom Exponent Level 2 
Data 13.5km 
http://disc.gsfc.nasa.gov/datacollection/SWDB_L2_V004.shtml   
 
IR Brightness Temperature: 
NCEP/CPC 4-km Global (60 deg N - 60 deg S) Merged IR Brightness 
Temperature Dataset 

Data Curation Service 
recommends relevant 
datasets to support event 
analysis  



MODIS-Aqua 2008-05-03 18:45 UTC MODIS-Aqua 2008-05-05 18:30 UTC 

http://gdata2.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omil2g 

Generate Giovanni SO2 Plots  

Rules Engine invokes a 
Giovanni processing 
workflow to assemble 
and compare the 
wind, aerosol and SO2 
data for the event 
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Part 2: Data Curation 
Algorithm for Phenomena 
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Data Curation 
•  Curation is traditionally defined as the process of 

collecting and organizing information around a 
common subject matter or a topic of interest and 
typically occurs in museums, art galleries, and 
libraries.  

•  Ramachandran et al. [2015] define geocuration as 
the act of searching, selecting, and synthesizing 
Earth science data/metadata and information from 
across disciplines and repositories into a single, 
cohesive, and useful collection.  
o  Manual  
o  Automated 
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Objectives 

•  Design a data curation (relevancy ranking) 
algorithm for a set of phenomena 

•  Provide the data curation algorithm as a stand 
alone service 

•  Envisioned Use:  
o  Given a phenomenon type (Ex: Hurricane), DCS returns a 

list of relevant data sets (variables) 
•  <list of data sets (variables)> = DCS(Phenomenon Type) 

o  For a specific phenomenon instance (event: Hurricane 
Katrina), these curated datasets can be filtered based on 
space/time to get actual granules 
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Data Curation is a Specialized  
Search Problem 
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Our Approach 
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Methodology 
•  Selected three metadata fields 

o  Science Keywords  
o  Data set long name (title) 
o  Data set description 

•  Developed customized vector space model for 
each field 

•  Compared different similarity measures 
o  Cosine vs Jaccard 

•  Used Weighted Zone Ranking (Ensemble) 
o  Sc(e) = ws · Sc(s) + wl · Sc(l) + wd · Sc(d) 
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Experiment Setup 
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Comparison of Similarity 
Measures 

  Hurricane Volcanic Eruption 
Jaccard 

Coefficient 
Cosine 

Similarity 
Jaccard 

Coefficient 
Cosine 

Similarity 
Top 10 

retrieval 
10 9 6 7 

Top 20 
retrieval 

17 16 15 15 

Top 30 
retrieval 

23 24 22 21 
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•  Both of the measures performed similarly 
•  Selected Cosine Similarity measure because it is commonly used 

in space vector model information retrieval  



Ranking Results (Top 20) 
using Ensemble Method 
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  Optimal Weight Equal Weight Random 

Precision Recall Precision Recall Precision Recall 

Hurricane 90.0% 47.4% 85.0% 44.7% 54.3% 28.6% 

Volcanic Eruption 85.0% 68.0% 80.0% 64.0% 62.5% 50.0% 

Fire 75.0% 30.0% 75.0% 30.0% 64.1% 25.6% 

Flood 65.0% 48.1% 55.0% 40.7% 35.5% 26.3% 

•  Different numbers of “relevant” data sets, collection size (recall) 
exist within each truth set for each phenomenon 

•  Better to compare the curation results against the random 
selection rather than compare the performance against each 
other  

•  On average, precision improves about 25% when using our 
method and recall improves about 16%  



Optimal ensemble weights 
for each phenomenon 

Phenomenon Optimal Weight Set (Wsciencekeyword, Wlongname, Wdescription) 

Hurricane (0.6, 0.1, 0.3) 
Volcanic Eruption (0.2, 0.6, 0.2) 

Fire (0.6, 0.2, 0.2) 
Flood (0.5, 0.4, 0.1) 
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•  Weight for science keyword is largest while the weight for 
description is smallest 

•  Science keywords metadata fields use a controlled 
vocabulary and should be accurate and consistent  

•  Description field is free-text and has the most variability in 
quality  



Methodology Limitations 
•  Modeling the search intent is difficult 

o  one may be interested in only a specific aspect of a 
phenomenon whereas another user may only be interested in 
some other characteristic of a phenomenon 

•  Quality of metadata records is variable  
o  Key assumptions is that the metadata records stored in the 

CMR catalog are consistent, correct, and complete 
o  Launched a project to fix this 

•  Granularity of the Controlled Vocabulary 
o  Rich detailed controlled vocabulary provides a better level of 

annotation granularity to represent different phenomena and 
help disambiguate data sets  

•  Truth set labels may be biased 
o  domain experts on our team have stronger expertise in certain 

areas such as hurricanes and weaker expertise in others  
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Next: Find relevant data fields 
•  Need actual data variables 

o  Example: Giovanni uses these fields for 
visualization 

•  What we know  
o Data set (Collection) level science keywords 

(GCMD) – Experts 
o Granule data fields and metadata – Auto 

extract* 

•  How do we map? 
o  Start with GCMD to CF Standard name 
o Most don’t follow CF Standard names 
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Approach 
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Example: GLAS/ICESat L2 Global Thin Cloud/Aerosol 
Optical Depths Data (HDF5) V033 – Dataset Metadata 
 



Example: GLAS/ICESat L2 Global Thin Cloud/Aerosol 
Optical Depths Data (HDF5) V033 

 

Sample file: GLAH11.033/2006.10.25/
GLAH11_633_2117_001_1275_0_01_0001.H5 

Data Variables 



Example: GLASICESat L2 Global Thin Cloud Aerosol Optical 
Depths Data (HDF5) V033 

Science keyword to variable mapping 
•  r_Surface_relh|Surface Relative Humidity 

o  No match 

•  r_Surface_temp|Surface Temperature 
o  No match 

•  r_Surface_wind|Surface Wind Speed 
o  No match 

•  r_cld1_od|Cloud Optical Depth at 532 nm    
o  Score=3 keyword: ATMOSPHERE->CLOUDS->CLOUD OPTICAL DEPTH/THICKNESS     
o  Score=2 keyword: ATMOSPHERE->AEROSOLS->AEROSOL OPTICAL DEPTH/THICKNESS 

Variable to keyword mapping 
•  ATMOSPHERE->CLOUDS->CLOUD OPTICAL DEPTH/THICKNESS 

o  Score=3 name: r_cld_ir_OD|Cloud Optical Depth at 1064 nm    

o  score=3 name:i_cld1_qf|Cloud optical depth  flag for 532 nm    
o  Score=3 name:i_cld1_uf|Cloud optical depth  flag for 532 nm 
o  Score=3 name:r_cld1_od|Cloud Optical Depth at 532 nm 
o  more with low scores 

•  Serendipitous Discovery - Data Curation Parameter Mapping 
Algorithm can be used to assess 
•  Metadata quality for both dataset and granules 
•  Find incorrect/incomplete keyword annotations 
•  Automatically suggest science keywords  



Parameter Mapping Tool  

Datasets

Science 
Keyword

Mapped Parameters
Edit/Save MappingMapped Science Keywords

Parameter

Mapping Scores Generated by Algorithm



Part 3: Rules Engine 



What settings should I use to visualize 
this event? 

Dataset
? 

Visualization 
Type? 

Images from : http://globe-views.com/dcim/dreams/volcano/volcano-03.jpg , http://grecaira.users37.interdns.co.uk/essay/images/confused.png , http://disc.sci.gsfc.nasa.gov/datareleases/images/
nldas_monthly_climatology_figure_9.gif  

Data 
Variable

? 

Goal:	
  Automate	
  data	
  preprocessing	
  and	
  exploratory	
  	
  
analysis	
  and	
  visualiza;on	
  tasks	
  
 



Strategy 
•  Service to generate and rank candidate workflow 

configurations 

•  Use rules to make assertions about compatibility based on 
multiple factors 

o  does this data variable make sense for this feature? 

o  does this visualization type make sense for this feature? 

o  does the temporal / spatial resolution of this dataset make sense 
for this feature? 

•  Each compatibility assertion type is assigned weights. 

o  ex: Strong = 5, Some = 3, Slight = 1, Indifferent = 0, Negative = -1.  

•  Based on the aggregated compatibility assertions, we 
calculate the score for each visualization candidate. 



Ruleset Development 

Survey asked users to rate 
characteristics of phenomena features 

Survey results used to formulate rules 

[rule1:	
  	
  
	
  	
  (?feature	
  rdf:type	
  
dd:AshPlume)	
  	
  
	
  	
  -­‐>	
  
	
  	
  (?feature	
  
dd:strongCompatibilityFor	
  
dd:temporal_evolution),	
  	
  
	
  	
  (?feature	
  
dd:indifferentCompatibilityFor	
  
dd:east-­‐west-­‐movement),	
  
	
  	
  …	
  
]	
  



Phenomena Feature Characteristic 
Mappings 

Phenomena East-
West 
Movem
ent 

North-
South 
Movement 

Temporal 
Evolution 

Spatial 
Extent of 
Event 

Year-to-
Year 
Variability 

May 
Impact 
Seasonal 
Variation 

Variation 
with 
Atmospher
ic Height 

Global 
Phenomen
a 

Detection 
of Events 

Volcano - 
Ash Plume 

Indiffere
nt 

Indifferent Strong Slight Strong Strong Strong Strong Strong 

Flood Some Some Strong Some Some Strong Some Slight Some 

Dust Storm Strong Strong Strong Strong Indifferent Indifferent Strong Indifferent Some 



Service to Characteristic Mappings 
Service Visualizatio

n 
East-West 
Movement 

North-South 
Movement 

Temporal 
Evolution 

Spatial 
Extent of 
Event 

Year-to-
Year 
Variability 

Seasonal 
Variation 

Variation 
with 
Atmospheri
c Height 

Global 
Phenomena 

Detection of 
Events 

Time-
averaged 

Map 

Color-Slice 
Map ✓ 

Area-
averaged 
Time Series 

Time Series 
✓ ✓ 

User-
defined 

Climatology 
 

Color-Slice 
Map ✓ 

Vertical 
Profile 

Line Plot 
✓ 

Seasonal 
Time Series 

Time Series 
✓ 

Zonal 
Means 

Line Plot 
✓ 

Hovmoller 
(Longitude) 

Color-Slice 
Grid ✓ 

Hovmoller 
(Latitude) 

Color-Slice 
Grid ✓ 



Compute Compatibility 

Phenomena: 
Volcano - Ash 
Plume 

Service - Area 
Averaged Time 
Series 

Area 
Averaged 
Time Series : 
bestFor →  

Temporal 
evolution; 
Detection 
of events 

Temporal 
Evolution 

Detectio
n of 
Events 

Strong Strong 

STRONG 
COMPATIBILITY 

x2 

Images from , http://disc.sci.gsfc.nasa.gov/datareleases/images/nldas_monthly_climatology_figure_9.gif, http://www.clipartbest.com/cliparts/biy/bAX/biybAXGiL.png 
 
volcanic ash image - By Boaworm (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons 



Part 4: Application 
(Demo) 



Integrating Services in 
Giovanni 

•  Tool: Giovanni is a popular on-line 
environment that lets users 
discover, plot, and download a 
number of geophysical 
parameters (data variables) 

•  Goal: Leverage Dark Data services 
and technologies to assist 
Giovanni users in discovering and 
exploring data 

‘Success will be realized when Giovanni 
requests can be automatically invoked with 
the appropriate spatial and temporal extents, 
variables and workflow / visualization type for 
a particular event’ 
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Giovanni – Standard Edition 

User 
needs to 
decide: 
-  Variable(s) 
-  Time 
-  Space 
-  Plot type 

http://giovanni.sci.gsfc.nasa.gov/giovanni/ 



Giovanni – Dark Data Edition 
Event Client Selected event & its time 

Curation 
Service: event 
type filters 
relevant 
variables 

Rules Service: 
highlights 
suitable plots 
based on 
selected event 
& variables 
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Giovanni - Dark Data Edition 

Event 
Analysis 
Workflow 



DEMO 
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Part 5: Image Retrieval 
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Image Retrieval   

43 

•  Goal: given an image of Earth science 
phenomenon retrieve similar images 

•  Challenge: “semantic gap” 
o  low-level image pixels and high-level 

semantic concepts perceived by humans 



“Deep” Architecture  
•  Features are key to recognition 
•  What about learning the features? 
•  Deep Learning 

o Hierarchical Learning 
o Mimics the human brain that is organized in a 

deep architecture  
o  Processes information through multiple stages of 

transformation and representation 
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Trainable
Feature Extractor Trainable Classifier

Convolutional Neural Network (CNN) - Applicable to Images 



Transfer Learning 
•  CNN requires large number of parameters 
•  Learning parameters from a few thousand 

training samples is unrealistic 
•  Transfer learning  

•  Use internal representation learned from one 
classification task to another 

o AlexNet architecture - Krizhevsky et. al.  
o Weights learned from ImageNet 1.3 million high-

resolution images 
o  State-of-the-art classification accuracy 

A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Processing 
Systems 25, Curran Associates, Inc., pp: 1097-1105, 2012. 



•  AlexNet architecture 
o  Initialized weights with ImageNet trained model 
o Adaptive learning rate 
o GPU implementation 

Experiment: CNN Configuration 



Experiment CNN – Visualization  

Input Image 

Feature Maps – Convolution Layer 1 



Experiment CNN – Visualization  

Feature Maps – Convolution Layer 3 



Results: Confusion Matrix 

Overall Accuracy = 87.88%  

User’s Accuracy 
Dust 79.72% 
Hurricane 97.18% 
Smoke 93.07% 
Other 76.45% 

Producer’s Accuracy 
Dust 86.45%  
Hurricane 92.89% 
Smoke 88.78% 
Other 80.23 

MODIS Rapid Response Test Images (Images are New to 
Trained CNN) 



Results (MODIS Rapid Response) 

Hurricane – True Positive 

Hurricane – False Negative 

Dust – True Positive 

Dust – False Positive 

Smoke– True Positive 

Smoke– False 
Positive 



Applications: Enabling new science 
•  Dust climatology – Collaboration with Sundar 

Christopher, UAH Atmospheric Science Professor 
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Based on GIBS  

Validation  
Accuracy = 91%  

Confusion Matrix 



Applications: Improving forecast 
operations 
•  Hurricane intensity estimation - Collaboration with 

Dan Cecil, NASA/MSFC Atmospheric Scientist 
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Overall Accuracy :  81 %(Top 2 Probabilities 95.73%) 

Cat 2 Hurricane 

Cat 4 Hurricane Data: NRL Images, HURDAT 



Ongoing Work 
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Summary 

•  Science data and information systems 
need to evolve to enable better data 
search, access and usability! 

•  Need operational services like – Data 
Curation Service, Rules Engine and 
Image Retrieval 
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Questions 
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