
SUPER-RESOLUTION RECONSTRUCTION OF HYPERSPECTRAL IMAGES VIA LOW
RANK TENSOR MODELING AND TOTAL VARIATION REGULARIZATION

Shiying He1,3, Haiwei Zhou1, Yao Wang1,3, Wenfei Cao2, and Zhi Han3

1School of Mathematics and Statistics, Xi’an Jiaotong University
2School of Mathematics and Information Science, Shaanxi Normal University

3Shenyang Institute of Automation, Chinese Academy of Sciences

ABSTRACT

In this paper, we propose a novel approach to hyperspectral
image super-resolution by modeling the global spatial-and-
spectral correlation and local smoothness properties over hy-
perspectral images. Specifically, we utilize the tensor nu-
clear norm and tensor folded-concave penalty functions to
describe the global spatial-and-spectral correlation hidden in
hyperspectral images, and 3D total variation (TV) to char-
acterize the local spatial-and-spectral smoothness across all
hyperspectral bands. Then, we develop an efficient algorithm
for solving the resulting optimization problem by combing
the local linear approximation (LLA) strategy and alternative
direction method of multipliers (ADMM). Experimental re-
sults on one hyperspectral image dataset illustrate the merits
of the proposed approach .

Index Terms— Hyperspectral images, Super-resolution
reconstruction, nuclear norm, Folded-concave penalty, 3D to-
tal variation.

1. INTRODUCTION

Hyperspectral images (HSIs) are recordings of reflectance of
light of some real world scenes or objects including hundreds
of spectral bands ranging from ultraviolet to infrared wave-
length [1, 2]. The abundant spectral bands of HSIs provide
fine spectral feature differences between various materials of
interest and enable many computer vision tasks more success-
fully achievable. However, due to the constraints of imaging
hardware, signal to noise ratio (SNR) and time constraints, the
acquired hyperspectral images unfortunately have low spatial
resolution, which cannot give any active help for high preci-
sion processing requirements in many fields including miner-
alogy, manufacturing, medical diagnostics, and surveillance.
Hence, the task of reconstructing a hyperspectral image of
high resolution (HR) from an observed low resolution (LR)
hyperspectral image or sequence is a valuable research issue.

This work was supported in part by the Natural Science Foundation of
China under grant numbers 11501440, 61273020 and 61303168. (Corre-
sponding author: Yao Wang, email: yao.s.wang@gmail.com.)

The problem of hyperspectral image super-resolution
(HSSR) can be solved by designing various traditional sig-
nal processing techniques, including the works [3, 4, 5]. In
the recent years, applying prior information of HR auxiliary
images into the process of HSSR has been becoming more
and more popular [6, 7]. However, such HR images are not
always easy to get due to the limitations of remote sensing
system. Therefore, super-resolution of single HSI cube has
atracted increased interest in many practical scenarios .

In this paper, we consider a single HSI cube as a tensor
with three modes (width, height, and band) and then discover
the hidden spatial-and-spectral structures using tensor mod-
elling for enhancing its spatial resolution. Specifically, the
spectral bands of a HSI have strong correlations and each
band if considered as a matrix has relatively strong correla-
tion; this spatial-and-spectral correlation can be modelled by
a low-rank tensor penalty. Additionally, for each voxel, from
the spatial viewpoint its intensity seems to almost equal to
those in its neighbourhood, and the same from the spectral
viewpoint; we then describe this local spatial-and-spectral
smoothness property using 3D total variation. As such,
the HSSR task resorts to solving an optimization problem,
which can be efficiently solved by combing LLA strategy and
ADMM.

2. HSSR VIA TOTAL VARIATION AND LOW-RANK
REGULARIZATIONS

In this section, we first introduce the observation model.
Then, we utilize 3D TV to describe local smoothness of a hy-
perspectral image, and adopt a tensor folded-concave penalty
to characterize global correlation of a hyperspectral image.
Finally, a novel regularization model is derived for the HSSR
task.

2.1. Observation model

The low spatial resolution hyperspectral image can be gener-
ated by the following observation model:

I = DSX + e,
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where the tensor I donates the observed LR image, D is a
downsampling operator, S is a blurring operator, X is the HR
image to be reconstructed and e represents the observation
noise. Since this is an ill-posed problem, some regularization
terms of X based on prior knowledge, denoted by R(X ), can
be introduced to regularize the solution to refine the solution
space: X̂ = arg minX {‖DSX − I‖2 + λR(X )}, where λ
is a scalar parameter to make a trade-off between the fidelity
term and the regularization term.

2.2. 3D TV regularization

Total variation (TV) [5] is often used to preserve local spa-
tial consistency in image recovery and suppress image noise.
Considering the fact that an HR hyperspecctral image to be
reconstructed is treated as a tensor, and its local spatial-and-
spectral consistency, or say, smoothness ccharacterized by 3D
total variation, which is expressed as TV (X ) =

∑
ijk |xijk−

xij,k−1|+ |xijk − xi,j−1,k|+ |xijk − xi−1,j,k|, where xijk is
the (i, j, k)-th entry of tensor X .

2.3. Low-rank regularization

The spatial-and-spectral correlation of a hyperspectral image
implies that each unfolded matrix, if a hyperspectral image
represented as a tensor, is low rank. Hence, following the
work [8], low-rank property of a three-order tensor can be
measured by a weighted sum of three ranks:

Rank(X ) =

3∑
i

αiRank(X(i)), (1)

where αi > 0 and satisfies
∑3
i αi = 1. Since the optimiza-

tion problem with rank constraint (1) is intractable, and ma-
trix nuclear norm is exploited as a tight convex surrogate of
the matrix rank [9] , one can replace the rank function (1) with
the following tensor nuclear norm:

‖X‖∗ =

3∑
i

αi‖X(i)‖∗, (2)

where ‖Z‖∗ :=
∑min(m,n)
k=1 σk(Z) denotes the nuclear norm

of matrix Z of sizem×n, and X(i) is the i-th unfolded matrix
of tensor X [8].

Although the convex nuclear norm (2) performs well in
various tensor recovery problems, studies such as [9] have
shown that the nuclear norm over-penalizes large singular val-
ues, and thus leads to the modeling bias in low rank structure
estimation. Folded-concave penalty [10] can be used to rem-
edy this modeling bias, as shown in some works [10, 11].
Thus, we shall utilize one of the folded penalties, the minmax
concave plus (MCP) penalty, of the form:

Pλ =

{
aλ2/2 if |t| > aλ

λ|t| − t2

2a otherwise.
(3)

Following [11], the folded-concave norm of a matrix X is
defined as ‖X‖Pλ :=

∑r
j=1 Pλ

(
σj(X)

)
1, where σj(X) is

the j-th singular value of X and r is the rank. As such, the
tensor MCP penalty is defined by applying the MCP penalty
function to each unfolded matrix X(i):

‖X‖Pλ =

N∑
i

αi‖X(i)‖Pλ . (4)

2.4. Proposed model

Based on the previous discussions, we now derive the follow-
ing regularization model for the HSSR task:

min
X
‖DSX − I‖2F + λ1TV (X ) + λ2L(X(i)), (5)

where the scalars λ1 and λ2 are regularization parameters, and
L(X(i)) is the low-rank measure function (1) or (4) for X .

3. OPTIMIZATION ALGORITHM

We first rewrite (5) as the following equivalent form by intro-
ducing N auxiliary variable {Mi}Ni=1:

min
X ,{Mi}Ni=1

‖DSX − I‖2F + λ1TV (X ) + λ2L(Mi)

s.t X(i) =Mi(i), i = 1, 2, ..., N
(6)

Based on ADMM [12], the augmented Lagrangian function is
written as follows:

L(X ,Yi,Mi) = ‖DSX − I‖2F + λ1TV (X )

+

N∑
i=1

λ2L(Mi(i)) +

N∑
i=1

ρ

2
‖Mi(i) −X(i) +

Yi(i)
ρ
‖2F ,

(7)

where {Yi}Ni=1 are Lagrangian parameters. We shall break (7)
into three subproblems and iteratively update each variable
through fixing the other ones. Let k denotes the kth iteration
step:

Subproblem 1:

X (k+1) = argmin
X
‖DSX − I‖2F + λ1TV (X )

+

N∑
i=1

ρ

2
‖Mk

i(i) −X(i) +
Yki(i)
ρ
‖2F

(8)

The well-known gradient method can be easily applied to
solve this subproblem.

Subproblem 2:

{M(k+1)
i }Ni=1 = arg min

{Mi}Ni=1

N∑
i=1

λ2L(Mi(i))

+

N∑
i=1

ρ

2
‖Mi(i) −X k(i) +

Yki(i)
ρ
‖2F

(9)

1Note that ‖X‖Pλ is nonconvex with respect to X .



The solution of this subproblem depends on the choice of the
low rank term L(X ). We first consider the case of nuclear
norm, i.e.,

N∑
i=1

λ2αi‖Mi(i)‖∗ +

N∑
i=1

ρ

2
‖Mi(i) −X k(i) +

Yki(i)
ρ
‖2F (10)

According to [8], its close-form solution is expressed as

Mi = foldi[Sλ2αi/ρ(X
(k+1)
(i) )− Y(k)

i(i)] (11)

For a given matrix X , the singular value shrinkage opera-
tor Sτ (X) is defined by Sτ (X) := UXDτ (ΣX)V TX , where
X = UXσXV

T
X is the singular value decomposition of X

and [Dτ (A)]ij = sgn(Aij)(|Aij | − τ)+.
While for the MCP case, we adopt the same idea of [10,

11] to solve the resulting nonconvex problem. More pre-
cisely, we use the local linear approximation (LLA) algorithm
to transform the MCP penalization problem into a series of
weighted nuclear norm penalization problem. Then the re-
sulting optimization problem can be solved as well. More
precisely, the subproblem 2 can be written as

{M(k+1)
i }Ni=1 = arg min

{Mi}Ni=1

N∑
i=1

λ2αiQPλ(σ(Mi(i))|σ(X k))

+

N∑
i=1

ρ

2
‖Mi(i) −X k(i) +

Yki(i)
ρ
‖2F ,

(12)

where QPλ(σ(X|Xk
(i))) is the locally linear approximation

of ‖X‖Pλ when Xk is given. Then the solution of this
optimization problem is Mi(i) = Sαi/ρ,Wi

(X(i) −
Yi(i)
ρ )

and the weight matrix Wi is given by Wi = Diag((λ −
(σ(X(i))/a))+) for some fixed a > 1.

Subproblem 3:

Y(k+1)
i = Y(k)

i + ρ(M(k+1)
i −X (k+1)), (13)

where ρ is a parameter associated with convergence rate with
fixed value, i.e., 1.05.

4. EXPERIMENTAL STUDY

We now test the proposed method on a HSI dataset. The ref-
erence image without noisy bands is a 256 × 256 × 146 hy-
perspectral image acquired over Moffett field, CA, in 1994
(AVIRIS). The blurring kernel is Gaussian kernel and the LR
image is generated by downsampling the original HR image
with a factor of 2, i.e., the LR image is of size 128×128×146.

We compare our method with three other popular meth-
ods, including the bicubic method described in [13], NARM
proposed in [14] and Sparse Representation method by Yang
et al. [15]. The reconstructed results of the test HSI for a spe-
cific band 100 are shown in Fig.1. One can observe that the

Bicubic interpolation blurs the image and the high-frequency
spatial details are lost. The other methods provide better
reconstruction visual effects. Additionally, our proposed
method shown in Fig.1(e) and (f) outperforms the other ones.
It is also interesting to note that the folded-concave penaliza-
tion, i.e., the MCP, outperforms other competing methods.

To further evaluate the quality of the proposed reconstruc-
tion strategy, several image quality measures have been em-
ployed, including peak-signal to noise ratio (PSNR), spectral
angle mapper (SAM), and relative dimensionless global error
in synthesis (ERGAS). It is known that the larger the PSNR,
the better the image quality is; the lower the SAM and ER-
GAS value are, the smaller spectral distortion.

Table 1. Quantitative Measures for Different SRR Methods
Quantitative Measures PSNR SAM ERGAS

Bicubic 33.0236 0.1248 126.0507
NRAM 33.1197 0.1297 124.3686

Sparse Representation 35.7409 0.1651 117.4637
Nuclear Norm Penalty 36.9567 0.0843 95.0166

MCP Penalty 37.8732 0.0720 88.5562

It can be seen from Table 1 that the proposed method
with nuclear norm and folded-concave penalties outperforms
other competing ones. Again, the MCP penalization provides
best reconstruction results, which illustrates the advantage of
folded-concave penalty over convex nuclear norm penalty.

5. CONCLUSION

In this paper, we propose a novel method for hyperspectral
image super-resolution by tensor structural modelling. The
proposed method considers the global correlation and local
smoothness of a hyperspectral image by combining low-rank
and total variation regularizations imposed on a tensor. Ex-
perimental results reveal that the proposed methods outper-
form other compared methods, and especially folded concave
penalization is superior over the nuclear norm penalization for
the HSSR task.
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