Learning sensor-specific features for hyperspectral images via 3-dimensional convolutional autoencoder | IEEE Conference Publication | IEEE Xplore

Learning sensor-specific features for hyperspectral images via 3-dimensional convolutional autoencoder


Abstract:

Deep learning techniques have brought in revolutionary achievements for feature learning of images. In this paper, a novel structure of 3-Dimensional Convolutional AutoEn...Show More

Abstract:

Deep learning techniques have brought in revolutionary achievements for feature learning of images. In this paper, a novel structure of 3-Dimensional Convolutional AutoEncoder (3D-CAE) is proposed for hyperspectral spatial-spectral feature learning, in which the spatial context is considered by constructing a 3-Dimensional input using pixels in a spatial neighborhood. All the parameters involved in the 3D-CAE are trained without the need of labeled training samples such that feature learning is conducted in an unsupervised fashion. Such unsupervised spatial-spectral feature extraction is also extended to different images from the same sensor to learn sensor-specific features. As a result, spatial-spectral features of hyperspectral images are extracted for a specific sensor under an unsupervised manner. Experimental results on several benchmark hyperspectral datasets have demonstrated that our proposed 3D-CAE are very effective in extracting sensor-specific spatial-spectral features and outperform several state-of-the-art deep learning neural networks in classification application.
Date of Conference: 23-28 July 2017
Date Added to IEEE Xplore: 04 December 2017
ISBN Information:
Electronic ISSN: 2153-7003
Conference Location: Fort Worth, TX, USA

Contact IEEE to Subscribe

References

References is not available for this document.