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ABSTRACT

Convolutional neural networks (CNN) have proven to be state
of the art methods for many image classification tasks and
their use is rapidly increasing in remote sensing problems.
One of their major strengths is that, when enough data is
available, CNN perform an end-to-end learning without the
need of custom feature extraction methods. In this work, we
study the use of different CNN architectures for cloud mask-
ing of Proba-V multispectral images. We compare such meth-
ods with the more classical machine learning approach based
on feature extraction plus supervised classification. Experi-
mental results suggest that CNN are a promising alternative
for solving cloud masking problems.

Index Terms— Convolutional neural networks, deep
learning, cloud masking, cloud detection, Proba-V

1. INTRODUCTION

In the last years, convolutional neural networks (CNN) have
become one of the most promising methods for both general
image classification tasks [1,2] and also remote sensing image
classification [3–5]. Beyond the high classification accuracy
shown in many problems, CNN present interesting proper-
ties for remote sensing image processing since they directly
learn from the available data the most relevant spatial fea-
tures for the given problem, i.e. a previous custom feature
extraction step is not required [6]. In this paper, we ana-
lyze the applicability of different CNN architectures in a com-
plex remote sensing problem in which the spatial context is of
paramount importance: cloud masking of Proba-V multispec-
tral imagery.

Images acquired by the Proba-V instrument [7], which
works in the visible and infrared (VIS-IR) ranges of the
electromagnetic spectrum, may be affected by the presence
of clouds. Cloud masking can be tackled as a two-class
classification problem; and the simplest approach to cloud
detection in a scene is the use of a set of static thresholds (e.g.
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over reflectance or temperature) applied to every pixel in the
image, which provides a cloud flag (binary classification).
However, Proba-V instrument presents a limited number of
spectral bands (Blue, Red, NIR and SWIR) which makes
cloud detection particularly challenging since it does not
present thermal channels or a dedicated cirrus band. Current
Proba-V cloud detection uses multiple thresholds applied to
the blue and the SWIR spectral bands [8], but the defini-
tion of global thresholds is practically impossible. Hence,
for next Proba-V reprocessing [9], monthly composites of
cloud-free reflectance in the blue band are used to define
dynamic thresholds depending on the land cover type. In this
context, given the reduced amount of spectral information,
spatial information seems crucial to increase the performance
of classification methods and the cloud detection accuracy.

2. METHODOLOGY

CNN are a special type of neural networks that present a
series of convolutional layers especially designed to cope
with inputs in the form of multidimensional arrays (image
patches) [10]. The CNN architecture used in this work is
based on [11] and consists of 2 blocks of 2 convolutional
layers followed by a max-pooling layer. Each convolutional
layer is formed by convolution, batch normalization [12], and
a rectified linear unit (ReLU). At the top a fully connected
(FC) block with 256 hidden units is included, whose out-
puts are used to predict the output with a sigmoid activation
function.

The network is trained to minimize the binary cross-
entropy between predictions h(xi,ω) and corresponding
labels yi:

−
N∑
i=1

(
yi log(h(xi,ω)) + (1− yi) log(1− h(xi,ω))

)
,

where N is the number of training samples, xi is the ith input
training sample (image patch), h(·) is the network output, ω is
the set of weights of the network, and yi is the desired output
for the image patch central pixel, which will be 1 for cloud
contaminated samples and 0 otherwise. In case of a patch
output, i.e. when an entire patch is predicted at a time, the
objective is the mean of the binary cross-entropy over all out-
puts. The network was trained with the Adam algorithm [13],
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which is a mini-batch stochastic gradient descent algorithm
with adaptive estimates of lower order moments.

Finally, a common problem of classification algorithms,
and of CNN in particular, is the overfitting problem that pro-
duces a poor generalization. The close relationship between
the complexity of the classifier and the size of the training
set suggests the idea of imposing some kind of regularization
when training the models. To avoid overfitting the dropout
technique [14] is applied at the end of both max-pooling
stages (0.25 probability) and after the FC layer (0.5 proba-
bility). In addition, data augmentation is also employed to
increase the size of the training set by adding flipped ver-
sions (left to right and up to down) of the available training
samples (image patches). The data augmentation approach is
shown in Fig. 1, which was previously used in the context of
SVMs [15].

3. EXPERIMENTAL SETUP

Two different approaches are analyzed to apply the proposed
CNN to the cloud detection of Proba-V:

• Patch-to-pixel classification scheme [16]: Small patches
(subimages with the 4 Proba-V channels) are extracted
from the image and used as input data, being the whole
patch labeled according to the label of the center pixel.
We test two input configurations: 4-channel 17 × 17
and 33× 33 patches.

• Patch-to-patch classification scheme: Instead of classi-
fying the center pixel we classify a central patch. Again
we try 4-channel 17× 17 and 33× 33 patches as inputs
and predict a 9× 9 output patch. Figure 1 shows input
and output patches as they are fed to the network.

Bigger input patch sizes make the model slower to train and
to run. This is an important issue since cloud masking algo-
rithms should be applied to all images acquired by the satel-
lite. On the other hand, bigger input sizes allow the model to
integrate more surrounding information, which could make
the model more accurate. With the output patch sizes the
trade-off happens the other way around: bigger output sizes
will make the model faster since we predict an entire patch at
a time instead of a pixel.

All CNN models were implemented in Python using the
Keras library [17]. Training was done in CPUs for small mod-
els (input size 17) and GPUs for bigger ones (33× 33 input).
Training time ranged from 20 to 30 hours depending on the
load of the computer.

In the experiments, we benchmark the proposed CNN ap-
proaches against two state of the art classifiers: standard fully
connected neural networks (multilayer perceptron, MLP) and
gradient boosting machines (GBM) [18, 19]. We trained both
methods following a pixel-to-pixel classification scheme with
different information content at the used input data: (1) the
four channels of the instrument (bands); (2) the four channels
plus ten spectral features useful for cloud detection (feat); and

False RGB Output patch labels

Fig. 1. Example of patch-to-patch input and output with and with-
out data augmentation. In the first row we have the 33x33 patch and
the patch with the 9x9 ground truth. In the second row the same
patch is flipped and with its ground truth equally flipped

(3) the channels plus spectral features plus basic spatial fea-
tures (3 × 3 and 5 × 5 mean and std) from which we finally
select 40 relevant spatio-spectral inputs (denoted by all).

4. EXPERIMENTAL RESULTS

The available data set consists of 60 Proba-V images ac-
quired in four days covering the four seasons: 21/03/2014,
21/06/2014, 21/09/2014, and 21/12/2014. All models are
trained on 100,000 pixels randomly chosen from these im-
ages. An independent set of 360,000 pixels was left for
testing purposes. The datasets were balanced to contain an
equal number of cloud-contaminated and cloud-free pixels.

First, we look at the reference GBM and MLP machine
learning approaches (Table 1). The effect of feature extrac-
tion results in a boost in the performance, specially when spa-
tial information is included. Additionally, we notice that both
GBM and MLP achieve similar accuracies on the test set.

In the case of CNN, first we confirm in Table 2 the improve-
ment, due to the proposed data augmentation, on the the over-
all accuracy (OA%) and Cohen’s Kappa statistic (κ). Then,
Table 3 shows that both CNN (17 × 17 and 33 × 33 input)
outperform the classical approach of feature extraction plus
supervised classification when we predict the central pixel
(patch to pixel), while patch to patch approaches result in
lower accuracies. Figure 2 shows the accuracy over the whole
9× 9 output patch, where one can observe that central pixels
are more accurately predicted whereas accuracies over pixels



Table 1. Gradient boosting machines and neural networks accu-
racies on pixel to pixel classification scheme using as inputs: (1) the
bands (bands); (2) bands and spectral features (feat); and (3) bands,
spectral features and spatial features (all).

Inputs GBM MLP
(1) bands 92.92% 93.43%
(2) feat 93.39% 93.51%
(3) all 94.60% 94.51%

Table 2. Train and test set accuracy with and without data aug-
mentation on the 33 × 33 patch to pixel CNN model. The model
with data augmentation incurs in less overfitting.

Data Augmentation Train (OA / Kappa) Test (OA / Kappa)
NO 98.55% / 0.9709 95.05% / 0.9007
YES 96.11% / 0.9221 95.44% / 0.9085

on the boundaries of the 9× 9 patches are lower.
It should be noticed that the networks trained in this work

are smaller, in terms of the number of weights, than com-
mon CNN presented in the literature [16]. However, our prob-
lem can be considered less complex since there are only two
classes. In addition, having a smaller network presents the ad-
vantage of a lower computational cost during the test phase.
Figure 3 shows the computational time of the proposed CNN
models per batch of 128 4-channel image patches. As we
discussed before, smaller input sizes result in lower compu-
tational cost of the whole network. In addition, the burden of
predicting a patch instead of a single value is barely noticed.
Since patch-to-patch prediction yields a 9 × 9 output, patch
prediction is 81 times faster than predicting the center pixel
for a complete image. Nevertheless accuracy is reduced from
95.44% to 93.06% in the case of 33 × 33 input size (see Ta-
ble 3). When choosing a 17 × 17 input size, accuracy loss is
higher, dropping from 94.92% to 90.33%.

Finally, an illustrative example of the resulting cloud mask
is shown in Fig. 4. In this figure, we show an scene of Papua
New Guinea with a complex cloud structure over ocean and
land. The high overall detection accuracy (95%) and Co-
hen’s Kappa statistic (κ=0.87) confirm the visual agreement
between the cloud pattern and the obtained cloud mask.

5. CONCLUSSIONS

In this paper, we presented a comprehensive study of the ap-
plication of CNN models to cloud masking of Proba-V satel-
lite images. We shown that CNN models outperform the clas-
sical approach of feature extraction plus supervised classi-
fication, even using advanced machine learning methods, in
this cloud detection problem. We compared different input

Table 3. CNN accuracies of different input/output configurations.
Patch to patch accuracies are measured in the center pixel and the
mean over all patches overlapping this pixel.

patch to pixel patch to patch
center mean

17× 17 input 94.92% 92.90% 90.33%
33× 33 input 95.44% 93.78% 93.06%

and output network configurations (patch sizes) that revealed
a trade-off between classification accuracy and computational
cost.

Future work is tied to better analyze the CNN training
hyperparameter selection and to study the detection perfor-
mance over high reflectance surfaces such as ice/snow, sand
and urban areas. Another direction is to couple cloud and
shadow detection on the CNN classifier.
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Fig. 2. Detection accuracy (%) of patch-to-patch models per pixel of the 9× 9 output patch.
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Fig. 3. CNN computational cost per batch of 128 patches using
CPUs. Times measured over 2970 different batches.
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