

Planetary Crater Detection and Registration Using Marked Point Processes, Multiple Birth and Death Algorithms, and Region-based Analysis

David Solarna², Gabriele Moser², Jacqueline Le Moigne¹, and Sebastiano B. Serpico²

¹ NASA Goddard Space Flight Center
² University of Genoa

IGARSS 2017, Fort Worth, Texas, July 2017

Content

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Content

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Introduction

Need for automated methods for image registration

Objective

- Crater detection in planetary images
- Development of an image registration method based on the extracted features

Content

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Marked Point Processes

Crater detection based on a marked point process (MPP) model

MPP: Stochastic Process Realizations Configurations of objects, each described by a marked point

Mathematical Formulation

A **point process** X, defined over a bounded subset P of \mathbb{R}^2 maps from a probability space to a **configuration of points** in P.

Realizations of the process X are random configurations x of points, $x = \{x_1, ..., x_n\}$, where x_i is the location of the ith point in the image plane $(x_i \in P)$

A configuration of an MPP consists of a point process whose points are enriched with additional parameters, called marks and aimed at parameterizing objects linked to the points.

Bayesian approach: Maximum a posteriori (MAP) rule to fit the model to the image is equivalent to minimizing an energy function (computationally challenging)

Marked Point Process for Crater Detection

Crater Detection – Energy Function

Energy function of the configuration $X = \{x_i, x_2, ..., x_n\}$ wrt the extracted set C of **contour pixels** (Canny):

$$U(X|C) = U_P(X) + U_L(C|X)$$

Prior

Repulsion coefficient based on the overlapping of the ellipses (overlapping craters are quite unlikely)

$$U_P(X) = \frac{1}{n} \sum_{x_i \wedge x_j > 0} \frac{x_i \wedge x_j}{x_i \vee x_j}$$

 $x_i \lor x_j$ = area of union of ellipses x_i and x_j $x_i \land x_j$ = area of intersection of x_i and x_j

Likelihood

Two terms, one based on a **correlation** measure, the other based on a **distance** measure (fit between contours and realization of X)

$$U_L(C|X) = \sum_{i=1}^n \left[\frac{d_{\mathcal{H}}(x_i^0, C)}{na_i} - \frac{\left| x_i^0 \cap C \right|}{|C|} \right]$$

 x_i^0 = set of pixels corresponding to ellipse x_i in the image plane $d_{\mathcal{H}}(x_i^0, \mathcal{C})$ = Hausdorff distance between ellipse x_i and the contours:

$$d_{\mathcal{H}}(A,B) = \max \left\{ \sup_{\alpha \in A} \inf_{\beta \in B} d(\alpha,\beta) ; \sup_{\beta \in B} \inf_{\alpha \in A} d(\alpha,\beta) \right\}$$

Classical distance between sets d(A, B) = 0

Crater Detection – Energy Minimization

Markov chain Monte Carlo-type method Simulated Annealing scheme

Markov chain sampled by a multiple birth and death (MBD) algorithm

MBD - Birth and Death Steps

Birth Step

For **each pixel** s in the image, compute the **birth probability** as $\min\{\delta \cdot B(s), 1\}$, where:

$$B(s) = \frac{b(s)}{\sum_{s} b(s)}$$

b(s) is the **birth map** computed from the contour map using generalized Hough transform and Gaussian filtering

Death Step

For **each ellipse** x_i in the configuration, compute the **death probability** as $d(x_i)$:

$$d(\mathbf{x}_i) = \frac{\delta \cdot a(\mathbf{x}_i)}{1 + \delta \cdot a(\mathbf{x}_i)}$$

$$a(\mathbf{x}_i) = \exp\left[-\beta \left(U_L(X \setminus \{\mathbf{x}_i\} \mid C) - U_L(X \mid C)\right)\right]$$

Crater Detection – Region Based Approach

Region Based Flowchart and Example

Crater Detection – Data Sets

- 6 THEMIS (Thermal Emission Imaging System) images, TIR, 100m resolution, Mars Odissey mission
- 7 HRSC (High Resolution Stereo Color) images, VIS,
 ~20m resolution, Mars Express mission
- Image sizes from 1581 \times 1827 to 2950 \times 5742 pixels

Quantitative Performance Assessment of the crater detection algorithm: Detection Percentage (D), Branching Factor (B), and Quality Percentage (Q)

Data	$D = \frac{TP}{TP + FN}$	$B = \frac{FP}{TP}$	$Q = \frac{TP}{TP + FP + FN}$
Avg on all THEMIS	0.91	0.10	0.83
Avg on all HRSC	0.89	0.06	0.85
Avg on all images	0.90	0.09	0.84

Crater Detection – Results

HRSC Sensor

Crater geometric properties extracted by the proposed method

Crater	$\boldsymbol{\mathcal{C}}=(x_0,y_0)$	Semi-axes (a, b)	Orientation $ heta$
Crater 1	(139, 393)	(35, 33)	64°
Crater 2	(258, 756)	(51,50)	115°
Crater 3	(343, 23)	(13, 12)	180°
Crater 4	(591, 215)	(19, 18)	31°
Crater 5	(919, 157)	(15, 14)	106°

HRSC Sensor

THEMIS Sensor

Content

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Image Registration – 2-Step Optimization

Why a 2-step Optimization?

15

Feature-based registration

- Min Hausdorff distance $(d_{\mathcal{H}})$ between extracted craters through genetic algorithm
- Fast but sensitive to accuracy of crater maps

Area-based registration

- Max Mutual Information (MI) through genetic algorithm
- Highly accurate but computationally heavy

Image Registration – Region of Interest

Transformation found for an interactively selected region of interest $\rightarrow p_B^*$

$$p_B = (t_x, t_y, \theta, k)$$

Transformation derived for the entire Image $\rightarrow p_A^*$ $p_A = (T_x, T_y, \beta, \alpha)$

$$p_{A}^{*} = \begin{pmatrix} -k\cos(\theta) \ x_{0} - k\sin(\theta) \ y_{0} + t_{x} + x_{0} \\ k\sin(\theta) \ x_{0} - k\cos(\theta) \ y_{0} + t_{y} + y_{0} \\ \theta \\ k \end{pmatrix}$$

Superposition of Reference and Input

Image Registration – Data Sets

Semi-simulated image pairs

20 pairs composed of one real THEMIS or HRSC image and of an image obtained by applying a synthetic transform and AWGN

Quantitative validation with respect to the true transform (RMSE)

Real multi-temporal image pairs

Real multi-temporal pair of LROC (Lunar Reconnaissance Orbiter Camera) images

100m resolution

Only qualitative visual analysis is available, as no ground truth is available

Registration Results with Semi-synthetic Data

RGB of original nonregistered data

RGB of registered data

			Left Image	Right Image
Data set	RMSE [pixel]	p_{GT}	(7.05, 35.91, 0.18°, 1.071)	(76.59, 19.96, 2.17°, 1.031)
THEMIS (10 data sets)	0.31	p^*	(7.04, 35.92, 0.19°, 1.071)	(76.41, 20.06, 2.18°, 1.031)
HRSC (10 data sets)	0.22	RMSE 1st Step	0.79	0.51
Average (20 data sets)	0.26	RMSE 2 nd Step	0.16	0.33

Registration Results with Real Data

Visually accurate matching between reference and registered images in the real multitemporal data set

Checkerboard representation of the registered images (zoom on details)

Registration Results with Real Data

Visually accurate matching between reference and registered images in the real multitemporal data set

Content

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Conclusions and Future Developments

Conclusions

- Accurate crater maps, useful for both image registration and planetary science, were obtained from data from different sensors.
- Higher accuracy as compared to previous work on crater detection (not shown for brevity)
- Reduced time for convergence thanks to a region-based approach
- Sub-pixel accuracy and visual precision in registration: effectiveness of the proposed 2-step registration method

Future Developments

- Test in conjunction with a parallel implementation (e.g. computer cluster)
- Validation with multi-sensor real images
- Extension to other applications requiring the extraction of ellipsoidal or circular features, e.g. optical Earth observation images or medical images

Short Bibliography

- G. Troglio, J. A. Benediktsson, G. Moser and S. B. Serpico, "Crater Detection Based on Marked Point Processes," in *Signal and Image Processing for Remote Sensing*, CRC Press, 2012, p. 325–338.
- G. Troglio, J. Le Moigne, J. A. Benediktsson and G. S. S. B. Moser, "Automatic Extraction of Ellipsoidal Features for Planetary Image Registration," *IEEE Geoscience and Remote Sensing Letters*, vol. 9, pp. 95-99, 2012.
- S. Descamps, X. Descombes, A. Bechet and J. Zerubia, "Automatic Flamingo detection using a multiple birth and death process," in *IEEE International Conference on Acoustics, Speech and Signal Processing*, Las Vegas, NV, 2008.
- X. Descombes, R. Minlos and E. J. Zhizhina, "Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum," *Journal of Mathematical Imaging and Vision,* vol. 33, p. 347–359, 2009.
- E. Zhizhina and X. Descombes, "Double Annealing Regimes in the Multiple Birth-and-Death Stochastic Algorithms," *Markov Processes and Related Fields, Polymath,* vol. 18, pp. 441-456, 2012.
- J. Le Moigne, N. S. Netanyahu and R. D. Eastman, Image Registration for Remote Sensing, Cambridge University Press, 2011.
- I. Zavorin and J. Le Moigne, "Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery," *IEEE Transactions on Image Processing*, vol. 14, no. 6, pp. 770 782, 2005.
- J. M. Murphy, J. Le Moigne and D. J. Harding, "Automatic Image Registration of Multimodal Remotely Sensed Data With Global Shearlet Features," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 54, no. 3, pp. 1685 1704, 2016.
- J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press, 1975, p. 183.

Appendix

MBD - Birth Step

For **each pixel** in the image compute the **Birth Probability** as $\min\{\delta \cdot B(s), 1\}$, where:

$$B(s) = \frac{b(s)}{\sum_{s} b(s)}$$

Being b(s) the **Birth Map** computed from the **Canny Contour Map**

MBD - Death Step

For each ellipse x_i in the configuration compute the **Death Probability** as $d(x_i)$, where

$$d(x_i) = \frac{\delta \cdot a(x_i)}{1 + \delta \cdot a(x_i)} \quad \text{and} \quad a(x_i) = e^{-\beta \left(U_L(\{x \setminus x_i\} \mid I_g) - U_L(x \mid I_g)\right)} = e^{\beta \cdot U_L^i(x_i \mid I_g)}$$

The complete **Flowchart** of the **Death Step** is as follows:

Similarity Measures

Hausdorff Distance

$$Similarity = mean_c \left\{ \sum_{i=1}^{N^c} \sum_{t=1}^{P} \left[d_H(\underline{x}_i^c, \underline{x}_t) \right] \right\}$$

c = craters in Input Image

 $N^c = sum(pixels in crater c in Input Image)$

P = sum(craters'border pixels in Ref Image)

 \underline{x}_{i}^{c} = coord of pixel i in crater c in Input Image

 $\underline{\mathbf{x}}_{\mathsf{t}} = \mathsf{coord}$ of pixel t in Ref Image's craters

Mutual Information

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p_{X,Y}(x,y) \log \left(\frac{p_{X,Y}(x,y)}{p_X(x) p_Y(y)} \right)$$

X: pixel intensity in Reference Image Y: pixel intensity in Input Image $p_X(x)$: probability density function (pdf) of X $p_Y(y)$: probability density function (pdf) of Y $p_{X,Y}(x,y)$: joint pdf of X and Y

RST Transformation

Rotation – Scale – Translation Transformation

Transformation vector

$$p = (t_x, t_y, \theta, k)$$

 $\{t_x, t_y\}$: Translations in x and y

 θ : Rotation angle

k: Scaling Factor

Matrix Formulation

$$T_p(x,y) = \begin{pmatrix} k\cos(\theta) & k\sin(\theta) & t_x \\ -k\sin(\theta) & k\cos(\theta) & t_y \end{pmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Region of Interest Approach

 $I_A(X,Y)$, $I_B(x,y)$: Two Images I_B : sub-image of I_A such that $I_B(0,0) = I_A(x_0,y_0)$

 $p_A = (T_x, T_y, \beta, \alpha)$: RST transformation vector transforming I_A into I_A^{tr} $p_B = (t_x, t_y, \theta, k)$: RST transformation vector transforming I_B into I_B^{tr} $I_B^{tr}(0,0) = I_A^{tr}(x_0, y_0)$

Given: $\begin{cases} Transformation: p_B \\ Reference of Region: (x_0, y_0) \end{cases}$

Find: $Transformation: p_A$

From the image

$$\begin{cases} X = x + x_0 \\ Y = y + y_0 \end{cases}$$

Expressing the transformation in Matrix Form

X

$$T_{p_A} = \begin{pmatrix} \alpha \cos(\beta) & \alpha \sin(\beta) & T_x \\ -\alpha \sin(\beta) & \alpha \cos(\beta) & T_y \end{pmatrix} : T_{p_A}(X,Y) = (X',Y')$$

$$T_{p_B} = \begin{pmatrix} k \cos(\theta) & k \sin(\theta) & t_x \\ -k \sin(\theta) & k \cos(\theta) & t_y \end{pmatrix} : T_{p_B}(x,y) = (x',y')$$

This should also hold $T_{p_A}(x+x_0,y+y_0)=(x'+x_0,y'+y_0)$

Plugging T_{p_A} into this equation and replacing

$$x' \text{ and } y' \text{ according to } T_{p_B}$$

$$k \cos(\theta) x + k \sin(\theta) y + t_x + x_0 =$$

$$\alpha \cos(\beta)(x + x_0) + \alpha \sin(\beta)(y + y_0) + T_x$$

$$-k \sin(\theta) x + k \cos(\theta) y + t_y + y_0 =$$

$$-\alpha \sin(\beta)(x + x_0) + \alpha \cos(\beta)(y + y_0) + T_y$$

Knowing $\alpha = k$ and solving in $P_1 = (0,0)$ and $P_2 = (-x_0, -y_0)$

$$p_{A} = \begin{pmatrix} -k\cos(\theta) \ x_{0} - k\sin(\theta) \ y_{0} + t_{x} + x_{0} \\ k\sin(\theta) \ x_{0} - k\cos(\theta) \ y_{0} + t_{y} + y_{0} \\ \theta \\ k \end{pmatrix}$$

RMS Error Computation

Ground Truth Transformation

Ground Truth Transformation
$$p_{GT} = (t_{x1}, t_{y1}, \theta_1, k_1) \rightarrow T_{p_{GT}}(x, y) = Q_{p_{GT}} \cdot [x, y, 1]^T$$

ComputedTransformation

$$p = (t_x, t_y, \theta, k) \rightarrow T_p(x, y) = Q_p \cdot [x, y, 1]^T$$

Erorr Transformation

$$(x,y) \in \text{Image, } [x',y',1]^T = Q_{P_e} \cdot [x,y,1]^T$$

$$\Longrightarrow$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = k_e \begin{pmatrix} \cos(\theta_e) & \sin(\theta_e) \\ -\sin(\theta_e) & \cos(\theta_e) \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_{xe} \\ t_{ye} \end{bmatrix}$$

RMS Error:
$$E(p_e) = \sqrt{\frac{1}{AB} \int_0^A \int_0^B (x' - x)^2 + (y' - y)^2 dx dy},$$

$$\alpha = A^2 + B^2$$

$$E^{2}(p_{e}) = \frac{1}{AB} \int_{0}^{A} \int_{0}^{B} (k_{e} \cos(\theta_{e}) x + k_{e} \sin(\theta_{e}) y + t_{xe} - x)^{2} + (-k_{e} \sin(\theta_{e}) x + k_{e} \cos(\theta_{e}) y + t_{ye} - y)^{2} dx dy$$

$$E^{2}(p_{e}) = \frac{\alpha}{3}(k_{e}^{2} - 2k_{e}\cos(\theta_{e}) + 1) + (t_{xe}^{2} + t_{ye}^{2}) - (At_{xe}^{2} + Bt_{ye}^{2})(1 - k_{e}\cos(\theta_{e})) - k_{e}(At_{ye} - Bt_{xe})\sin(\theta_{e})$$

