Planetary Crater Detection and Registration Using Marked Point Processes, Multiple Birth and Death Algorithms, and Region-based Analysis

David Solarna², Gabriele Moser², Jacqueline Le Moigne ${ }^{1}$, and Sebastiano B. Serpico²
${ }^{1}$ NASA Goddard Space Flight Center ${ }^{2}$ University of Genoa

IGARSS 2017, Fort Worth, Texas, July 2017

Content

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Int roduction

Need for automated methods for image registration

$\left.\begin{array}{|c|}\begin{array}{|c}\text { Launch of several } \\ \text { planetary missions }\end{array} \\ \hline \begin{array}{c}\text { Design of new and } \\ \text { powerful sensors }\end{array} \\ \hline\end{array}\right\}$

Objective

- Crater detection in planetary images
- Development of an image registration method based on the extracted features

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Marked Point Processes

Crater detection based on a marked point process (MPP) model

MPP: Stochastic Process $\xrightarrow{\text { Realizations }} \begin{gathered}\text { Configurations of objects, each } \\ \text { described by a marked point }\end{gathered}$

Mathematical Formulation

A point process X, defined over a bounded subset P of \mathbb{R}^{2} maps from a probability space to a configuration of points in P.

Realizations of the process X are random configurations x of points, $x=\left\{\boldsymbol{x}_{1}, \ldots, x_{n}\right\}$, where \boldsymbol{x}_{i} is the location of the $i^{\text {th }}$ point in the image plane ($\boldsymbol{x}_{i} \in P$)

A configuration of an MPP consists of a point process whose points are enriched with additional parameters, called marks and aimed at parameterizing objects linked to the points.

Bayesian approach: Maximum a posteriori (MAP) rule to fit the model to the image is equivalent to minimizing an energy function (computationally challenging)

Marked Point Process for Crater Detection

Crater Detection - Energy Function

Energy function of the configuration $X=\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ wrt the extracted set C of contour pixels (Canny):

$$
U(X \mid C)=U_{P}(X)+U_{L}(C \mid X)
$$

Prior

Repulsion coefficient based on the overlapping of the ellipses (overlapping craters are quite unlikely)

$$
U_{P}(X)=\frac{1}{n} \sum_{x_{i} \wedge x_{j}>0} \frac{\boldsymbol{x}_{i} \wedge \boldsymbol{x}_{j}}{\boldsymbol{x}_{i} \vee \boldsymbol{x}_{j}}
$$

$x_{i} \vee x_{j}=$ area of union of ellipses x_{i} and x_{j} $x_{i} \wedge x_{j}=$ area of intersection of x_{i} and x_{j}

Likelihood

Two terms, one based on a correlation measure, the other based on a distance measure (fit between contours and realization of X)

$$
U_{L}(C \mid X)=\sum_{i=1}^{n}\left[\frac{d_{\mathcal{H}}\left(x_{i}^{0}, C\right)}{n a_{i}}-\frac{\left|x_{i}^{0} \cap C\right|}{|C|}\right]
$$

$x_{i}^{0}=$ set of pixels corresponding to ellipse x_{i} in the image plane $d_{\mathcal{H}}\left(x_{i}^{0}, C\right)=$ Hausdorff distance between ellipse \boldsymbol{x}_{i} and the contours:

$$
d_{\mathcal{H}}(A, B)=\max \left\{\sup _{\alpha \in A} \inf _{\beta \in B} d(\alpha, \beta) ; \sup _{\beta \in B} \inf _{\alpha \in A} d(\alpha, \beta)\right\}
$$

Classical distance between sets $d(A, B)=0$

Crater Detection - Energy Minimization

Markov chain Monte Carlo-type method Simulated Annealing scheme

Markov chain sampled by a multiple birth and death
(MBD) algorithm

MBD - Birth and Death Steps

Birth Step

For each pixel s in the image, compute the birth probability as $\min \{\delta \cdot B(s), 1\}$, where:

$$
B(s)=\frac{b(s)}{\sum_{s} b(s)}
$$

$b(s)$ is the birth map computed from the contour map using generalized Hough transform and Gaussian filtering

Death Step

For each ellipse x_{i} in the configuration, compute the death probability as $d\left(\boldsymbol{x}_{i}\right)$:

$$
d\left(\boldsymbol{x}_{i}\right)=\frac{\delta \cdot a\left(\boldsymbol{x}_{i}\right)}{1+\delta \cdot a\left(\boldsymbol{x}_{i}\right)}
$$

$a\left(\boldsymbol{x}_{i}\right)=\exp \left[-\beta\left(U_{L}\left(X \backslash\left\{\boldsymbol{x}_{i}\right\} \mid C\right)-U_{L}(X \mid C)\right)\right]$

Crater Detection - Region Based Approach

Region-Based Approach	Why?	- MBD is computationally heavy
		Computational burden increases with image size

Region Based Flowchart and Example

Crater Detection - Data Sets

- 6 THEMIS (Thermal Emission Imaging System) images, TIR, 100 m resolution, Mars Odissey mission
- 7 HRSC (High Resolution Stereo Color) images, VIS, $\sim 20 \mathrm{~m}$ resolution, Mars Express mission
- Image sizes from 1581×1827 to 2950×5742 pixels

Data	$D=\frac{T P}{T P+F N}$	$B=\frac{F P}{T P}$	$Q=\frac{T P}{T P+F P+F N}$
Avg on all THEMIS	0.91	0.10	0.83
Avg on all HRSC	0.89	0.06	0.85
Avg on all images	0.90	0.09	0.84

Crater Detection - Results

Crater geometric properties extracted by the proposed method

Crater	$\boldsymbol{C}=\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{0}}\right)$	Semi-axes $(\boldsymbol{a}, \boldsymbol{b})$	Orientation $\boldsymbol{\theta}$
Crater 1	$(139,393)$	$(35,33)$	64°
Crater 2	$(258,756)$	$(51,50)$	115°
Crater 3	$(343,23)$	$(13,12)$	180°
Crater 4	$(591,215)$	$(19,18)$	31°
Crater 5	$(919,157)$	$(15,14)$	106°

HRSC Sensor

THEMIS Sensor

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Image Registration-2-Step Optimization

Why a 2-step Optimization?

Feature-based registration

- Min Hausdorff distance ($d_{\mathcal{H}}$) between extracted craters through genetic algorithm
- Fast but sensitive to accuracy of crater maps

Area-based registration

- Max Mutual Information (MI) through genetic algorithm
- Highly accurate but computationally heavy

Fast registration based on extracted craters $\rightarrow \widetilde{\boldsymbol{p}}$

Refinement: registration based on mutual information in a neighborhood of $\widetilde{\boldsymbol{p}} \rightarrow \boldsymbol{p}^{*}$

Transformation found for an interactively selected region of interest $\rightarrow p_{B}^{*}$

$$
p_{B}=\left(t_{x}, t_{y}, \theta, k\right)
$$

Transformation derived for the entire Image $\rightarrow p_{A}^{*}$

$$
p_{A}=\left(T_{x}, T_{y}, \beta, \alpha\right)
$$

Superposition of Reference and Input

Image Registration - Data Sets

Semi-simulated image pairs

20 pairs composed of one real THEMIS or HRSC image and of an image obtained by applying a synthetic transform and AWGN

Quantitative validation with respect to the true transform (RMSE)

Real multi-temporal image pairs

Real multi-temporal pair of LROC (Lunar Reconnaissance Orbiter Camera) images

100m resolution
Only qualitative visual analysis is available, as no ground truth is available

Registration Results with Semi-synthet ic

 DataRGB of original non-
registered data

Data set	RMSE [pixel]		$p_{G T}$	$\left(7.05,35.91,0.18^{\circ}, 1.071\right)$	$\left(76.59,19.96,2.17^{\circ}, 1.031\right)$
THEMIS (10 data sets)	0.31		p^{*}	$\left(7.04,35.92,0.19^{\circ}, 1.071\right)$	$\left(76.41,20.06,2.18^{\circ}, 1.031\right)$
HRSC (10 data sets)	0.22		RMSE $1^{\text {st }}$ Step	0.79	0.51
Average (20 data sets)	0.26		RMSE 2 $2^{\text {nd }}$ Step	0.16	0.33

Registration Results with Real Data

0

> Visually accurate matching between reference and registered images in the real multitemporal data set

Checkerboard representation of the registered images (zoom on details)

Visually accurate matching between reference and registered images in the real multitemporal data set

Introduction

Crater Detection

- Marked Point Process Model
- Energy Function
- Multiple Birth and Death Algorithm
- Region-of-Interest Approach
- Experimental Results

Image Registration

- 2-step Approach
- Experimental Results

Conclusion

Conclusions and Future Developments

Conclusions

- Accurate crater maps, useful for both image registration and planetary science, were obtained from data from different sensors.
- Higher accuracy as compared to previous work on crater detection (not shown for brevity)
- Reduced time for convergence thanks to a region-based approach
- Sub-pixel accuracy and visual precision in registration: effectiveness of the proposed 2 -step registration method

Future Developments

- Test in conjunction with a parallel implementation (e.g. computer cluster)
- Validation with multi-sensor real images
- Extension to other applications requiring the extraction of ellipsoidal or circular features, e.g. optical Earth observation images or medical images

Short Bibliography

- G. Troglio, J. A. Benediktsson, G. Moser and S. B. Serpico, "Crater Detection Based on Marked Point Processes," in Signal and Image Processing for Remote Sensing, CRC Press, 2012, p. 325-338.
- G. Troglio, J. Le Moigne, J. A. Benediktsson and G. S. S. B. Moser, "Automatic Extraction of Ellipsoidal Features for Planetary Image Registration," IEEE Geoscience and Remote Sensing Letters, vol. 9, pp. 95-99, 2012.
- S. Descamps, X. Descombes, A. Bechet and J. Zerubia, "Automatic Flamingo detection using a multiple birth and death process," in IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, 2008.
- X. Descombes, R. Minlos and E. J. Zhizhina, "Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum," Journal of Mathematical Imaging and Vision, vol. 33, p. 347-359, 2009.
- E. Zhizhina and X. Descombes, "Double Annealing Regimes in the Multiple Birth-and-Death Stochastic Algorithms," Markov Processes and Related Fields, Polymath, vol. 18, pp. 441-456, 2012.
- J. Le Moigne, N. S. Netanyahu and R. D. Eastman, Image Registration for Remote Sensing, Cambridge University Press, 2011.
- I. Zavorin and J. Le Moigne, "Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery," IEEE Transactions on Image Processing, vol. 14, no. 6, pp. 770 782, 2005.
- J. M. Murphy, J. Le Moigne and D. J. Harding, "Automatic Image Registration of Multimodal Remotely Sensed Data With Global Shearlet Features," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1685-1704, 2016.
- J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press, 1975, p. 183.

Appendix

MBD - Birth Step

For each pixel in the image compute the Birth Probability as $\min \{\delta \cdot B(s), 1\}$, where:

$$
B(s)=\frac{b(s)}{\sum_{s} b(s)}
$$

Being $b(s)$ the Birth Map computed from the Canny Contour Map

MBD - Death Step

For each ellipse x_{i} in the configuration compute the Death Probability as $d\left(x_{i}\right)$, where

$$
d\left(x_{i}\right)=\frac{\delta \cdot a\left(x_{i}\right)}{1+\delta \cdot a\left(x_{i}\right)} \quad \text { and } \quad a\left(x_{i}\right)=e^{-\beta\left(U_{L}\left(\left\{x \backslash x_{i}\right\} \mid I_{g}\right)-U_{L}\left(x \mid I_{g}\right)\right)}=e^{\beta \cdot U_{L}^{i}\left(x_{i} \mid I_{g}\right)}
$$

The complete Flowchart of the Death Step is as follows:

Similarit y Measures

Hausdorff Distance

$$
\text { Similarity }=\operatorname{mean}_{c}\left\{\sum_{i=1}^{N^{c}} \sum_{t=1}^{P}\left[d_{H}\left(\underline{x}_{i}^{c}, \underline{x}_{t}\right)\right]\right\}
$$

$\mathrm{c}=$ craters in Input Image
$\mathrm{N}^{\mathrm{c}}=\operatorname{sum}$ (pixels in crater c in Input Image)
$\mathrm{P}=\operatorname{sum}$ (craters'border pixels in Ref Image)
$\underline{x}_{i}^{c}=$ coord of pixel i in crater c in Input Image
$\underline{x}_{t}=$ coord of pixel t in Ref Image's craters

Mutual Information

$M I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p_{X, Y}(x, y) \log \left(\frac{p_{X, Y}(x, y)}{p_{X}(x) p_{Y}(y)}\right)$
X : pixel intensity in Reference Image
Y : pixel intensity in Input Image
$p_{X}(x)$: probability density function (pdf) of X $p_{Y}(y)$: probability density function (pdf) of Y $p_{X, Y}(x, y)$: joint pdf of X and Y

RST Transformation

Rotation - Scale - Translation Transformation

Transformation vector

$$
p=\left(t_{x}, t_{y}, \theta, k\right)
$$

$\left\{t_{x}, t_{y}\right\}$: Translations in x and y
θ : Rotation angle
Matrix Formulation

$$
T_{p}(x, y)=\left(\begin{array}{ccc}
k \cos (\theta) & k \sin (\theta) & t_{x} \\
-k \sin (\theta) & k \cos (\theta) & t_{y}
\end{array}\right)\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

k : Scaling Factor

Original

Rotation

Scaling

Translation

Region of Interest Approach

Expressing the transformation in Matrix Form

$$
\begin{array}{ll}
\text { From the image } & T_{p_{A}}=\left(\begin{array}{ccc}
\alpha \cos (\beta) & \alpha \sin (\beta) & T_{x} \\
-\alpha \sin (\beta) & \alpha \cos (\beta) & T_{y}
\end{array}\right): \\
\qquad \begin{array}{lll}
X=x+x_{0} & & \left.T_{p_{A}}, Y\right)=\left(X^{\prime}, Y^{\prime}\right) \\
Y=y+y_{0} & & T_{p_{B}}=\left(\begin{array}{ccc}
k \cos (\theta) & k \sin (\theta) & t_{x} \\
-k \sin (\theta) & k \cos (\theta) & t_{y}
\end{array}\right): \\
T_{p_{B}}(x, y)=\left(x^{\prime}, y^{\prime}\right)
\end{array}
\end{array}
$$

This should also hold

$$
T_{p_{A}}\left(x+x_{0}, y+y_{0}\right)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)
$$

Plugging $T_{p_{A}}$ into this equation and replacing

$$
x^{\prime} \text { and } y^{\prime} \text { according to } T_{p_{B}}
$$

Knowing $\alpha=k$ and solving in $P_{1}=(0,0)$ and $P_{2}=\left(-x_{0},-y_{0}\right)$

$$
\left\{\begin{array}{c}
k \cos (\theta) x+k \sin (\theta) y+t_{x}+x_{0}= \\
\alpha \cos (\beta)\left(x+x_{0}\right)+\alpha \sin (\beta)\left(y+y_{0}\right)+T_{x} \\
-k \sin (\theta) x+k \cos (\theta) y+t_{y}+y_{0}= \\
-\alpha \sin (\beta)\left(x+x_{0}\right)+\alpha \cos (\beta)\left(y+y_{0}\right)+T_{y}
\end{array}\right.
$$

$$
p_{A}=\left(\begin{array}{c}
-k \cos (\theta) x_{0}-k \sin (\theta) y_{0}+t_{x}+x_{0} \\
k \sin (\theta) x_{0}-k \cos (\theta) y_{0}+t_{y}+y_{0} \\
\theta \\
k
\end{array}\right)
$$

Erorr Transformation

Ground Truth Transformation $p_{G T}=\left(t_{x 1}, t_{y 1}, \theta_{1}, k_{1}\right) \rightarrow T_{p_{G T}}(x, y)=Q_{p_{G T}} \cdot[x, y, 1]^{T}$

ComputedTransformation

$$
p=\left(t_{x}, t_{y}, \theta, k\right) \rightarrow T_{p}(x, y)=Q_{p} \cdot[x, y, 1]^{T}
$$

$(x, y) \in$ Image, $\left[x^{\prime}, y^{\prime}, 1\right]^{T}=Q_{P_{e}} \cdot[x, y, 1]^{T}$

$$
\longmapsto\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=k_{e}\left(\begin{array}{cc}
\cos \left(\theta_{e}\right) & \sin \left(\theta_{e}\right) \\
-\sin \left(\theta_{e}\right) & \cos \left(\theta_{e}\right)
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x e} \\
t_{y e}
\end{array}\right]
$$

$$
\text { RMS Error: } E\left(p_{e}\right)=\sqrt{\frac{1}{A B} \int_{0}^{A} \int_{0}^{B}\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2} d x d y}, \quad \alpha=A^{2}+B^{2}
$$

$$
E^{2}\left(p_{e}\right)=\frac{1}{A B} \int_{0}^{A} \int_{0}^{B}\left(k_{e} \cos \left(\theta_{e}\right) x+k_{e} \sin \left(\theta_{e}\right) y+t_{x e}-x\right)^{2}+\left(-k_{e} \sin \left(\theta_{e}\right) x+k_{e} \cos \left(\theta_{e}\right) y+t_{y e}-y\right)^{2} d x d y
$$

$$
E^{2}\left(p_{e}\right)=\frac{\alpha}{3}\left(k_{e}^{2}-2 k_{e} \cos \left(\theta_{e}\right)+1\right)+\left(t_{x e}^{2}+t_{y e}^{2}\right)-\left(A t_{x e}^{2}+B t_{y e}^{2}\right)\left(1-k_{e} \cos \left(\theta_{e}\right)\right)-k_{e}\left(A t_{y e}-B t_{x e}\right) \sin \left(\theta_{e}\right)
$$

