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ABSTRACT 

 

This paper suggests using color-guided depth enhancement 

algorithms of computer vision to improve the resolution of 

airborne laser scanning (ALS) point clouds for remote 

sensing applications. We use co-registered high resolution 

color images with nadir view to enhance the ALS data; and 

perform quantitative evaluation in form of RMSE 

considering the whole depth image as well as the depth 

discontinuities only. Investigated methods include joint 

bilateral filtering, Markov Random Field (MRF) 

optimization with first and second order smoothness terms, 

and anisotropic diffusion. RMSE results on discontinuities 

indicate that detail improvement performance of the selected 

methods on the depth discontinuities is not on a satisfactory 

level for airborne data. Anisotropic diffusion and MRF 

optimization are promising to provide better results with 

further adjustments on the smoothness terms. 

 

Index Terms— lidar depth enhancement, MRF 

optimization, JBF, anisotropic diffusion 

 

1. INTRODUCTION 

 

Airborne laser scanning (ALS) provides a fast way of 

obtaining high accuracy point clouds for mapping purposes. 

Capturing georeferenced 3D information requires little effort 

using available ALS systems [1]. However, ALS point 

clouds have limited density, thus these systems are not 

preferred when high-density 3D data is required. In 

comparison to ALS, digital photogrammetry can achieve a 

higher point density at similar altitudes, hence is nowadays 

preferable to ALS when high level of detail is required [2]. 

Nevertheless, dense stereo reconstruction is an exhaustive 

process with high algorithmic complexity, which increases 

the time required to obtain the 3D data from hours to days 

[2]. To overcome this dilemma of calculation time versus 

detail level, we suggest combining ALS point clouds with 

high resolution imagery.  

From nadir viewpoint, ALS point clouds can be 

perceived as low resolution depth maps for the registered 

color images. A fusion of these two data sources then could 

follow a simple assumption: Color and depth inconsistencies 

tend to co-occur, i.e. when observed from a single viewpoint, 

discontinuities in depth data are often accompanied by 

changes in color. Thus, fusing color and depth information 

into a higher density depth model should be possible. In the 

field of computer vision, this problem is called color-guided 

depth enhancement. Yang [3] suggests an iterative joint 

bilateral filter which performs upsampling on low resolution 

depth maps using a single reference image to a factor of 100 

within several minutes. The reason behind choosing a 

bilateral filter is its edge-preserving properties [4]. Diebel 

and Thrun [5] express the depth map and the image in a two-

layer graph and suggest an optimization solution using 

Markov Random Fields (MRF). The MRF has a data term 

and a smoothness term with the goal of incorporating both 

data conformity and color-guided discontinuity with 

appropriate weights in the optimization. Further work on 

MRF-based depth enhancement reinterprets this approach by 

adding more complex data and smoothness terms to increase 

the output quality, especially around depth discontinuities [6] 

[7]. Liu [8] suggests the available depth values to be 

modeled as a heat map and formulated the depth 

enhancement as a linear anisotropic heat diffusion problem. 

The goal of this work is to provide a quantitative 

comparison of available algorithmic approaches to the color-

guided depth enhancement problem on airborne remote 

sensing data. Guided by the research trends in computer 

vision, we choose to compare four approaches: (1) Joint 

bilateral filtering, (2) original MRF, (3) MRF with a second 

order smoothness prior and (4) anisotropic diffusion. We use 

the Vaihingen dataset [9] to evaluate different approaches 

and perform RMSE calculations using reference depth maps.  

This paper is constructed as follows: Algorithmic 

foundations of the selected methods are presented in Section 

2; followed by the details and results of our evaluation 

scheme in Section 3. Section 4 presents our conclusions. 

 

2. DEPTH ENHANCEMENT METHODS IN RANGE 

SENSING 

 

This section presents the methods we tested to perform depth 

enhancement with a given low-resolution input depth map 

and a co-registered high resolution image. In the following, 

we denote high resolution image with X, input depth map 

with Z, and high resolution depth map estimate with Y. Pixel 

locations are denoted by a two-element vector p = [ p0, p1 ], 

with  q = [ q0, q1 ] in the local neighborhood of p. Local 

neighborhood size depends on the algorithm in use. xp and yp 



  

are pixel values at the location p of the color image and the 

depth map, respectively. zp ∈ L are depth measurements with 

L denoting the locations of available measurements. 

 

2.1. Joint Bilateral Filter 

 

Given an initial low-resolution depth map Z and a high-

resolution image X, Yang [3] uses an iterative filtering 

scheme to refine the low-resolution depth map. First, the 

input depth map is upsampled to the goal resolution e.g. via 

bilinear interpolation. Then a cost volume C of depth 

probabilities is created for each potential depth candidate k 

over a search range K, between k and the current depth map 

Y: 

 . (1) 

Here, α is a constant. Each slice of the cost volume is 

then filtered using a joint bilateral filter that is calculated 

from the color image. The filter coefficients are calculated as 

follows: 
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fc is the color component and fs is the spatial component. 

The constant γs in the spatial component fs determines the 

filter size; whereas the impact of color difference is 

controlled by constant γc. The joint bilateral filter behaves 

like soft color segmentation in super-resolution calculation 

and aggregates the depth probabilities based on color 

difference. After filtering the cost slices, a minimum cost is 

selected by simple subpixel estimation to reduce quantization 

effects. The cost generation and the filtering are repeated 

iteratively to reach the optimal solution. 

 

2.2. MRF Optimization 

 

This depth enhancement method treats image and depth map 

as a connected two-layer graph in which five types of nodes 

exist: (1) low resolution range measurements Z, (2) high 

resolution image pixels X, (3) depth discontinuity u, (4) 

image gradient w and (5) estimated depth map Y. Depth 

discontinuity and image gradient fuse the image information 

into the estimation of Y [5]. The MRF is described as a 

weighted combination of the depth measurement potential Ψ 

and the depth smoothness prior Φ1: 
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Z is a normalizer; and β is a constant penalty for the 

difference between estimated and actual values when 

available. N(p) is the 4-neighborhood of pixel location p. In 

the depth smoothness prior, wpq are the weighting factors 

providing a connection between image and depth values: 

 . (8) 

Here, c is a key constant for penalizing the smoothness 

around the edges. Equation (5) is solved using a generic 

conjugate gradient algorithm such as in [10] to obtain the 

upsampling result. 

A reformulation of MRF-based depth enhancement uses a 

second-order smoothness term. The optimization problem is 

reformulated as follows [6]: 

. (9) 

Here, Φ1 is the first order smoothness prior in (7); Φ2 is 

the second order smoothness term. Ψ is the depth 

measurement potential in (6); λ1 and λ2 are weighting factors. 

Second order smoothness is the key term in this formulation, 

based on the assumption that surface gradients vary smoothly 

in the absence of discontinuities. With this assumption, [6] 

formulates a prediction in the local neighborhood of each 

pixel: 

 . (10) 

The prediction matrix P is defined as a linear 

combination of neighborhood interpolations and 

extrapolations. Weights in the linear combination are 

constructed to prefer interpolation between adjacent color 

values with little or no difference and favor direction of 

change in case of a color discontinuity. This enables a better 

adaptation to discontinuities, since a larger neighborhood is 

considered in case of large color differences. For a detailed 

formulation of the construction of the prediction matrix, we 

refer the reader to [6]. Furthermore, the formulation in [6] 

reduces the problem to a linear system of equations, which 

results in a faster calculation than iterative approaches. 

 

2.3. Anisotropic Diffusion 

 

Depth enhancement using anisotropic diffusion [8] treats 

known depth values as heat sources from which depth 

diffuses to regions of unknown depth. The diffusion in this 

case is guided by color and takes place in image pixel 

domain. The Gaussian color difference measure (8) is used 

to form diffusion conductance between two neighboring 

image pixels. (8) implies that depth values will diffuse faster 

in case of high color similarity. Unknown depth values are 

estimated solving an equation system of form Ay = b, with A 

and b defined as follows: 
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I is the identity matrix, wi,j denotes the Gaussian color 

difference. The indices i and j denote the vectorized 

equivalent of pixel locations p and q, respectively. y and b 

are considered as vectors with N elements, with N denoting 

number of image pixels, whereas A is a sparse matrix of size 

NxN. 



  

3. EXPERIMENTS 

 

3.1. Dataset 

 

We use a subset of the Vaihingen dataset [9], which includes 

high resolution color images and a digital surface model 

(DSM) with 10 cm ground sampling distance. We selected a 

1000x1000 pixels residential town area, which can be seen in 

Fig. 1. We used the DSM image as our depth map on a 

rectangular grid that is perfectly registered to image pixels; 

and performed downsampling using scaling factors that 

correspond to point densities 14pts/m
2
 (7x), 10pts/m

2
 (10x) 

and 5pts/m
2
 (20x). To assure that the resulting depth maps 

resembled lidar point clouds, we used a pseudo-random grid 

for downsampling.  

The input for the enhancement algorithms is then a 

simple interpolation of these depth maps except for 

anisotropic diffusion, which expects only the available set of 

depth measurements.  

 

3.2. Evaluation 

 

With the goal of restoring the downsampled depth maps to 

their original resolution, we test the enhancement quality 

using the algorithms presented in Section 2 and evaluate in 

form of RMSE between the high-resolution DSM and 

enhanced depth values. An additional discontinuity-RMSE 

(d-RMSE) is calculated on the areas around large 

discontinuities such as transitions from building roofs to 

roads. We define adjacent pixels with discontinuities larger 

than 2 meters as “edge pixels”. After determining these edge 

pixels in the DSM, we perform morphological dilation with 

2.5 pixels diameter to obtain a mask for calculating the d-

RMSE. Since the methods already favor simple interpolation 

on smooth surfaces and claim to perform edge-preserving 

enhancement on discontinuities, d-RMSE aims to evaluate 

the latter. 

Table 1 presents the quantitative evaluation results. As 

the scaling factor increased, the resulting depth maps 

included more errors. In comparison to RMSE, d-RMSE 

performances are considerably poorer. Fig. 2 presents a 

visual assessment of these errors in form of absolute 

differences, zoomed into a smaller area for clarity. For all 

methods, error extents around large discontinuities are often 

higher than 2 meters, which can be critical for certain 

classification tasks. On the other hand, the methods perform 

well in the areas with smooth changes or no changes in 

depth. An exception to that is joint bilateral filtering, which 

resulted in higher amounts of errors partially in smooth 

surfaces as well. 

Anisotropic diffusion resulted in the best error 

performance, followed closely by MRF with a second order 

smoothness prior. Both methods recover discontinuities 

better than JBF. JBF tends to create a gradient around depth 

discontinuities which appears like a blur-effect, resulting in 

higher d-RMSE values.  

 

4. DISCUSSION AND FUTURE WORK 

 

We evaluated four different approaches to the color-guided 

depth enhancement problem in airborne data with a nadir 

view. The key measure of our evaluation was the d-RMSE, 

which is calculated only around depth discontinuities. Our 

results indicate that while smooth surfaces are well restored, 

enhancement around discontinuities require improvement to 

be used in remote sensing applications. MRF with a second 

order smoothness term and anisotropic diffusion are 

promising in addressing these issues since they aim at giving 

more weight to the smoothness term around color 

discontinuities. In addition, joint bilateral filtering can be 

supplemented with a better global optimization approach to 

avoid blurring the depth edges in a similar way to MRF-

based methods. This would allow making use of the shape 

recovery performance of the joint bilateral filter. 

 

Table 1. Quantitative Evaluation Results 

 7x 10x 20x Average 

 RMSE d-RMSE RMSE d-RMSE RMSE d-RMSE RMSE d-RMSE 

JBF 0.3328 1.0654 0.3472 1.1059 0.3971 1.2302 0.3590 1.1338 

MRF 0.2933 0.9674 0.3156 1.0319 0.3839 1.2150 0.3309 1.0714 

MRF-2 0.2749 0.9180 0.3000 0.9912 0.3763 1.2011 0.3171 1.0368 

AD 0.2707 0.9116 0.2971 0.9864 0.3792 1.2140 0.3157 1.0373 

JBF: Joint bilateral filter, MRF: Original MRF, MRF-2: MRF with second order smoothness term, AD: anisotropic diffusion. 

 

Figure 1. Subset of Vaihingen dataset [14] used in experiments: (a) Color 

image, (b) DSM. 



  

Figure 2. Absolute image differences on the same image subset for comparison. Joint bilateral filtering (JBF) and original MRF optimization (MRF) 

performed noticeably worse in comparison to MRF with second order smoothness prior (MRF-2) and anisotropic diffusion (AD). Input depth maps with 

lower resolution resulted in increased errors in smooth surfaces (right column). 

 

Among the discussed methods, anisotropic diffusion is 

the only method that does not alter the given depth values 

and recovers the depth values locally from given “seeds”. 

Depending on the measurement accuracy, this can also lead 

to error propagation. We suggest investigating the impact of 

measurement errors in depth enhancement on both image 

and 3D measurements. Furthermore, for time critical 

applications, it is also important to make a quantitative 

evaluation of the runtime and hardware requirements. 
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