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HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A CONVOLUTIONAL NEURAL 
NETWORK AND DISCONTINUITY PRESERVING RELAXATION 
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ABSTRACT 

 
In this paper, we present a novel method for hyperspectral 
image classification to take advantage of the merits of a 
convolutional neural network (CNN) and the spatial 
contextual information of hyperspectral imagery (HSI). We 
built a novel network consisting of several convolutional, 
pooling and activation layers to extract the effective features 
and predict the class membership probability distribution 
vectors for HSI pixels. Furthermore, in order to fully exploit 
the spatial contextual information and improve the 
classification accuracy under the condition of limited 
training samples, a promising discontinuity preserving 
relaxation (DPR) algorithm is applied to process the 
probabilistic results obtained by the CNN work. The 
proposed method was tested on two widely-used 
hyperspectral data sets: the Indian Pines and University of 
Pavia data sets. Experiments revealed that the proposed 
method can provide competitive results compared to some 
state-of-the-art methods. 

Index Terms— Hyperspectral image (HSI) 
classification, convolutional neural network (CNN), 
discontinuity preserving relaxation (DPR) method. 
 

1. INTRODUCTION 
 
Hyperspectral imagery (HSI) is gaining attention due to its 
composition of hundreds of spectral channels over the same 
site. As an important approach to understand the remotely 
sensed images, HSI classification has been an active 
research field in recent years. However, the increased 
number of dimension in spectral domain and the limited 
number of training samples pose different processing 
problems for HSI classification, hence should be tackled 
under specific operations. Many attempts have been made to 
develop techniques that can classify HSI in an efficient 
manner. In the early stage of HSI classification, the majority 
of the methods have focused on processing of the spectral 
information. With the advancement of image processing 
knowledge, new techniques such as Markov Random Fields 
(MRFs) [1] and morphological operators [2] that incorporate 
spatial contextual information into HSI classification have 
been developed. 

Very recently, convolutional neural networks (CNNs) 
have been investigated and they have outperformed many 
approaches in various domains [3, 4]. Some CNN-based 

models have been proposed for HSI classification recently.  
In the report of Makantasis et al.[5], the authors have 
successfully applied a new network for HSI classification 
and both spectral and spatial information have been 
considered. In [6], a 3D-CNN model was proposed for high 
accuracy HSI classification. In the study of Lee et al. [7], the 
authors proposed a deeper CNN which adopted a fully 
convolution network particularly for the HSI classification 
task. Compared with the traditional hand-crafted methods, 
CNNs can extract the effective and representative features 
without the need of predefined parameters. However, under 
the condition of the limited training samples, CNNs may not 
maximize the accuracy.   

On the other hand, it has been observed that the spatial 
smoothing over the HSI can help enhance the classification 
accuracies [8]. As a post-processing approach, relaxation-
based methods can help remove the noisy points and 
improve the classification results. These methods are often 
referred to as probabilistic relaxation (PR) methods [9], 
which should be applied to the posterior probability 
distribution results obtained by other probabilistic methods. 
In [10], a promising PR technique namely “discontinuity 
preserving relaxation (DPR)” was proposed as a post-
processing technique to improve the classification results by 
imposing spatial consistency for the neighboring pixels in 
the final classification maps.  

In this paper, we developed a novel framework that 
integrates a CNN and DPR to fully exploit the spectral and 
spatial information simultaneously. At first, a proper 
network is built to compute the probability distribution 
vectors for test pixels, and then DPR is applied to the class 
membership probability distribution to derive the final 
labels. The DPR improves the classification results by 
exploiting the intrinsic correlations between the test pixel 
and its neighbors. The main advantage of the proposed 
method is the integration of a CNN and DPR where the 
CNN can extract the features automatically and ensure the 
accuracy for most pixels, and then the DPR can enhance the 
classification by smoothing the results. This paper is 
organized as follows. Section 2 layouts the principles of the 
proposed framework. Section 3 presents the experimental 
validation. Section 4 concludes the paper. 

 
2. THE CONTEXTUAL OF PROPOSED 

FRAMEWORK 
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Fig. 1 shows the framework of the proposed method. The 
proposed framework consists of two components, one is the 
CNN construction and the other is the probabilistic 
relaxation. The details of the two components are explained 
in detail in the following sections. 
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Fig.1. The flowchart of the proposed framework. 
 

2.1. Convolutional Neural Network 
 
CNNs extract the features via several non-linear functions. 
In this paper, we consider HSI classification with the so-
called directed acyclic graphs (DAG) convolutional 
architecture in which the layers can share weights and the 
biases [11]. The basic layers in a CNN are introduced as 
follows: 

The function of a convolution function can be defined 
as: 

                              ( )a fx bσ= +                                (1) 
 

where a is a feature map which can be obtained by 
convolving the input x with a weight filter f and biases b . 

( )σ 
is a nonlinear activation function. The most frequently 

used activation function is rectified linear unit (ReLU). 
ReLU is defined as follows: 
 

                                 ( ) max(0, )x xσ =                          (2) 
 

Pooling layers are also important in CNN construction. 
Max pooling is used throughout this paper. In the max 
pooling, a small 1T × patch is combined from the previous 
layer. The max pooling function can be defined as: 

 
                                 1

1
max( ( ,1))t

i jT
a a u n×

×
=                      (3) 

 
where ( ,1)u n is a window function, ia is the maximum value 
in the patch. 

The network is trained through the back-propagation. 
Usually, the process can be treated as minimizing a defined 
loss function between the ground truth values (e.g. image 
labels) and the network output. Let 1,..., ,...,iy c C=  denote 
the target ground truth values, and let ( )iP y denote the 
output class membership distribution with 1, 2,...,i N= as 

the number of training samples. The multi-class hinge loss 
throughout this paper is given by 

 

                           
1 1

max(0,1 ( ))
N C

i
i c

L P y c
= =

= − =∑∑              (4) 

 
Finally, the test pixel is assigned to the label which 

minimizes the loss function:  
 

                           ˆ arg mini
c

y L=                                   (5)         

                                                         
2.2. The Construction of Convolutional Neural Network 
 
The input of the whole framework is a three dimensional 
cube for each pixel, and the output is the corresponding 
class membership probability distribution vector.  It can be 
observed from Fig. 1, for each pixel ix , each convolutional 
layer of the proposed CNN has a K K L× × format of input, 
where K K× is the kernel size and L is the number of 
spectral bands. Each convolutional layer for the proposed 
CNN has a three dimensional convolution where the third 
dimension is the number of kernels. The spatial size of the 

output is computed by ''' 1 [ ]H H PH
S

− +
= + , where 

H , 'H and ''H represent the input size, kernel size and 
output size, respectively; P and S denote the padding and 
stride, respectively.  For example, in Fig. 1, the input spatial 
format for the Pavia University data set is 7 7× , the 
convolution kernel size for the first layer is 4 4× without 
pooling and stride, then the output spatial size of this layer is 
4 4× .  
 
2.3. Discontinuity Preserving Relaxation   
 
The DPR [10] can be applied to further locally smooth the 
homogenous areas in the original HSI. Let 

1[ ,..., ] C N
Np p p ×= ∈ (where N is the number of samples, 

and 1,..., ,...,c C denote the class labels) be the class 
membership probability distribution obtained by the 
previous CNN step for all samples, ,1 , ,

[ , ..., , ..., ]T

i i i c i C
θ θ θ θ=

 
be 

the final class membership probability distribution computed 
by the DPR method, and ,i cθ be the final probability for the 
i th− test pixel belonging to class c . 
Let

1
[ , ..., , ..., ] C N

i N
θ θ θ θ ×= ∈  be the distribution matrix for all 

the samples. θ can be computed by relaxing the following 
optimization function: 
 

      

22min(1 )

: 0 1 1
i

j j i
i j S

T
i i

p

subject to

θ
λ θ λ δ θ θ

θ θ
∈

− − + −

≥ =

∑∑
           (6) 
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where 0 1λ≤ ≤  is the weight parameter which controls the 
impacts of the two terms in (6), and iS is the neighborhood 

of the test pixel ix . λ  measures the noisiness and 

smoothness levels of images. jδ  is the value at 

location ij S∈  which is obtained by a Sobel filter: 
 

                ( )

1

exp ( )
L

i

i

sobel Iδ
=

= − 
 
 
∑                              (7) 

 
where ()sobel  is the Sobel operator which produces two 
outputs: 0 or 1 corresponding to the existence and no 
existence of discontinuities in I . I denotes the original HSI 
cube. 

During the DPR procedure, the discontinuities in the 
original images are detected by the Sobel filter at first, and 
then DPR is applied on the classification maps obtained by 
the previous CNN step without crossing the class 
boundaries. In that way, DPR smooths the spatially 
homogenous areas. In this paper, the objective function (6) 
is solved by the same way in [10]. After 

,1 , ,
[ , ..., , ..., ]T

i i i c i C
θ θ θ θ= is recovered, ix can be assigned to the 
class that has the maximum probability: 

 
                  ,( ) arg max

1,2,...,
i i cClass x

c C
θ=

=
                    (8) 

 
3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1. Datasets and Baselines 
 
To verify the effectiveness of the proposed method, two data 
sets are applied in this paper: the Indian Pines and the 
University of Pavia data sets. The ground truth and false 
color images of the two data sets are shown in Fig. 2.  

The performance of the proposed framework is 
compared with several spectral-spatial classifiers: SVM with 
extended multi-attribute profiles (EMP) features [12], SVM 
with DPR, and CNN without DPR (The CNN has the same 
architecture as the proposed framework). λ is set as 0.85, 
and iS is set as the eight neighborhood pixels of the test 
pixel ix . For fair comparison, the training samples are 
randomly selected for each data set and the remaining as the 
test set. For Indian Pines data set, 15% samples are selected 
as training set. 250 samples are selected for each labeled 
classes as training data set for the University of Pavia. There 
are three convolutional layers, one pooling layer, and one 
ReLU layer in the network. The details of the network 
structure are shown in Fig. 3. The input images are initially 
normalized into [-1 1]. The input sizes are set different for 
two data sets due to the different spatial resolutions and 

homogenous areas, and set as 5 5× and 7 7×  for the Indian 
Pines and the University of Pavia, respectively. The learning 
rate for CNN models is set as 0.01; the number of epochs is 
set as 100 for the two data sets. The batch size is set as 10. 
To quantitatively validate the results of our proposed 
framework, overall accuracy (OA), average accuracy (AA) 
and the Kappa coefficient ( k ) are adopted as the metrics.  

 
                  (a)                                      (b)                                                   
 
Fig. 2. The (left) false color composite image bands (bands 
50, 27, 17) and (right) ground truth for two data sets: (a) 
Indian Pines; (b) University of Pavia. 
 

Indian 
Pines Pooling Deconv ReLU2 2 200× × 2 2× 2 2 200× × 4 4 16× ×5 5 200× ×

Pavia Pooling Deconv ReLU4 4 200× × 2 2× 2 2 200× × 4 4 9× ×7 7 103× ×

 
Fig. 3. The architecture of CNN for two data sets 

 

3.2. Classification Results 
 
Tables I-II show the classification performances for various 
classifiers. From the results, one can see that the 
classification performances of the CNN-based methods are 
better than those of other classifiers in terms of OA, AA and 
the k . Even with the limited training samples, the proposed 
method improves the classification results of the EMP-based 
and the original CNN. The OA of the proposed method is 
better than the CNN by 5.59% and 1.13% for two data sets, 
respectively. The improvement is realized by further 
exploitation of spatial information by the DPR. In addition, 
the performance enhancement compared to SVM-based 
methods is achieved by the integration of a properly built 
network and the efficient discontinuity preserving approach. 

The classification maps are illustrated in Figs. 4-5. 
From the maps, one can figure out how DPR affects the 
classification results. The two SVM-based methods achieved 
the similar results for the two data sets and produced more 
noisy scatter points on the maps. One can observe from the 
maps that the SVM+DPR smooths more homogeneous 
areas. The CNN-based methods produce more detailed maps 
under the condition of same training samples, and the DPR 
algorithm help improve the performance by smoothing the 
homogeneous areas without blurring the boundaries. It 
should be noted that the proposed CNN may achieve a better 
performance with more training samples.  
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TABLE I. 
CLASSIFICATION RESULTS (%) OF INDIAN PINES DATA SET 

Accuracy SVM+EMP SVM+DPR CNN CNN+DPR 
OA 87.03 87.81 89.14 94.73 
AA 88.89 91.64 94.77 96.10 
k  85.31 86.19 87.73 94.01 

 
TABLE II. 

CLASSIFICATION RESULTS (%) OF UNIVERSITY OF PAVIA 
DATA SET 

Accuracy SVM+EMP SVM+DPR CNN CNN+DPR 
OA 95.90 95.25 96.84 97.97 
AA 97.07 96.17 96.93 97.92 
k  94.63 93.75 95.84 97.32 

 

 
 
Fig. 4. Classification maps of Indian Pines data set for 
different classifiers: (a) SVM+EMP (b) SVM+DPR (c) 
CNN (d) CNN+DPR 
 

 
 
Fig. 5. Classification maps of the University of Pavia data 
set for different classifiers: (a) SVM+EMP (b) SVM+DPR 
(c) CNN (d) CNN+DPR 
 

4. CONCLUSION 
 
It is well known that CNNs can lead to an improved 
performance for image classification and the probabilistic 
relaxation strategy can incorporate the contextual 
information into a probabilistic classification results. Hence, 
we proposed a framework which integrates a CNN and 
probabilistic relaxation to leverage both spectral and spatial 
information for HSI classification. Firstly, the posterior 
probabilities for test pixels are obtained by the built network 
and then a discontinuity preserving relaxation algorithm is 
applied to derive the final pixel label vectors. The 
classification results on two popular data sets show that the 

proposed framework outperforms the state-of-the-art 
classifiers.  
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