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ABSTRACT 

 

A novel decision level data fusion algorithm for soil 

moisture content estimation is proposed in this paper. 

Firstly, individual estimations are determined, respectively, 

from the inversion of the Integral Equation Model (IEM) for 

Sentinel-1 and from the Temperature Vegetation Dryness 

Index (TVDI) for LANDSAT-8. Then, a feature level fusion 

of these methods is performed using an Artificial Neural 

Network (ANN). Finally, all estimations including the 

feature level fusion estimation are fused at the decision level 

using a novel weights based estimation. The area of interest 

for this study is Blackwell Farms, Guildford, United 

Kingdom and datasets were taken on 17/11/2017 for both 

Landsat-8 and Sentinel-1. Estimation from the proposed 

decision level fusion method produces a Root Mean Square 

Error RMSE (1.090%) which is lower than RMSE of the 

individual estimations of each sensor as well as that of the 

feature level fusion estimation. 

 

Index Terms— data fusion, weights based, Integral 

equation model, Temperature vegetation dryness index, 

Artificial Neural Network. 

 

1. INTRODUCTION 

 
An accurate Soil moisture content (SMC) estimation can lead 

to a better understanding of land surface conditions, natural 

resources managements (especially in agriculture) and the 

different interactions in land-atmosphere system. The most 

accurate SMC estimation is achieved by the direct 

measurement of SMC using handheld or in-situ sensors. The 

latter are limited to discrete measurements (point-based) at 

specific locations which is expensive in terms of both time and 

effort and do not represent the spatial distribution and the 

variability of SMC [1]. That is the reason why remote sensing 

(indirect measurements) are starting to gain some footing as a 

more viable and less expensive option. Remote sensors like 

Synthetic Aperture Radars (SAR) are especially known for 

their huge potential for SMC estimation at the regional and 

global scales [2]. Numerous literature has determined that 

SMC estimations can also be achieved (with variable degrees 

of accuracy) using a synergy of space borne multispectral and 

thermal infrared sensors [3]. Each of the aforementioned 

sensors can bring something different to the table. 

Multispectral imagers are characterised by high spatial 

resolution, a wide range of satellites to choose from, and 

robustness to the effect of partial vegetation cover. Thermal 

infrared imagers share the same properties expect they have a 

lower spatial resolution than their multispectral counterparts. 

However, multispectral imagers do not offer any information 

in night time and both multispectral and thermal infrared 

imagers suffer in poor weather conditions (clouds), not to 

mention that both cannot offer any surface penetration. On the 

other hand, a SAR offers very good spatial resolution, all-

weather all-light datasets, and surface penetration. SAR is also 

extremely sensitive to surface roughness and intense 

vegetation covers. It is important to highlight that all these 

sensors suffer in terms of temporal resolution. Data fusion 

techniques have been a popular solution to mitigate the 

limitations of each sensor due to their ability to combine 

information gathered from different sensors to achieve better 

understanding (far better than that which is attainable by a 

single sensor) of an object or phenomenon. Data fusion can be 

performed at different levels of processing: Signal Level 

fusion, image level fusion, feature level fusion and decision 

level fusion [4], this study is interested in the last two. In this 

study, an SMC estimation using decision level data fusion is 

proposed with the objective of achieving better accuracy than 

that of a single sensor. The inner workings of this methodology 

are deeply explained in the methodology section. 

2. METHODOLOGY 

 
This study proposes a weight based decision level data fusion 

method for SMC estimation. In order to fully explain how the 

fusion scheme works, a presentation of the individual 

estimation methods is necessary. The estimation methods in 

question are the Integral Equation Model (IEM) inversion for 

SAR and the Temperature Vegetation Dryness Index (TVDI) 

for the synergy of the multispectral and thermal infrared. This 

section would offer a brief description of these methods and an 

explanation of how the two independent estimations are fused 

at feature level. More details on the application of both 

methods are contained in [5]. Finally, the novel decision level 

fusion framework is introduced. 
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2.1 Integral Equation Model 

 

The backscattered SAR signal is influenced by numerous 

surface characteristics such as surface roughness, dielectric 

features of the soil and soil moisture content levels, and 

radar characteristics such as the frequency, incidence angle 

and polarization. The dielectric features of the soil are 

referred to as the dielectric constant (εs). The latter is heavily 

influenced by the mineralogical composition of the soil as 

well as the SAR frequency and soil moisture content 

presence. A regression analysis determined that this 

dependence is of polynomial nature [6]. That analysis 

yielded individual polynomial expressions for εs as a 

function of the soil moisture content for each frequency and 

soil type. The Integral Equation Model (IEM) is a single 

scattering theoretical model represented by a complex 

mathematical expression which inversion allows the 

estimation of soil moisture content levels and surface 

roughness parameters. The accuracy of SMC estimation 

using IEM inversion suffers in medium to intense vegetation 

covers. Moreover, the IEM model tends to underestimate the 

radar response in C-band in presence of vegetation, which 

would have a huge effect on the accuracy of SMC 

estimation. Translating this result in requirements, it means 

that the IEM inversion estimation is only reliable when the 

Normalized Difference Vegetation Index (NDVI) ≤ 0.2 [7]. 

This is enough reason to pursue a different estimation using 

a different sensor to deal with this issue. 

 

2.2 Temperature Vegetation Dryness Index 

 

Land Surface Temperatures (LST) and NDVI of 

heterogonous areas can be represented by a two-dimensional 

scatter plot which could be a triangular feature space as in 

[8]. There, the changes in SMC levels (described within the 

LST/NDVI triangle) are plotted as a function of surface 

temperature and fractional vegetation cover (for which 

NDVI is a good metric). The differences in radiative 

temperatures between soil and various vegetation canopies 

have different effects on LST. Evapotranspiration is another 

factor having an influence on LST through the energy 

balance of the surface: the available energy for sensible 

heating of the surface increases whenever there is a decrease 

in evapotranspiration due to stomatal resistance to 

transpiration which is controlled by soil moisture 

availability. The authors in [8] proposed an index that 

describes the LST/NDVI feature space called Temperature 

Vegetation Dryness Index (TVDI). TVDI values range from 

0 to 1, indicating respectively low and high levels of SMC. 

In [8], authors established that SMC and TVDI have a linear 

relationship. A more comprehensive review of this method 

with the description of its physical properties is found in [8].  

 

 

 

 

2.3 Artificial Neural Networks (ANN) 

 

Given the aforementioned mathematical complexity of the 

IEM, calculating SMC by its inversion is a hard and 

complex task. That motivated authors in [9] to use an 

Artificial Neural Network known as a multi-layer perceptron 

(MLP) for the inversion process. MLP is a system inspired 

by human neurons; it consists of artificial neurons in the 

form of units connected to each other by weights. The 

structure of an ANN has 3 layers: input layer, hidden layer 

and an output layer. All MLPs implemented here consist of 

an input layer in the form of a vector composed of different 

features, one or more hidden layers, and an output vector 

containing the ground measured SMC values. In this study, 

3 different ANNs are used. The first one is used for the IEM 

inversion and it is called ANNIEM. A second ANN, 

ANNTVDI, uses TVDI as an input while the third one, 

ANNFLF, is used for feature level fusion. Each of these 

ANNs has its own input feature vector.  ANNIEM has an 

input vector composed of the RMS height (s) and correlation 

length (l) of the soil, backscattering coefficient 𝜎o and the 

incident angle θi, ANNTVDI has an input vector composed of 

TVDI values only and the input of ANNFLF is explained in 

the following subsection. 

 

2.4 Feature level fusion 
 

In the feature level fusion, salient features are extracted from 

each sensor in question and then concatenated to create what is 

called joint feature vector. Let X = {x1, x2 ...xm} and Y = 

{y1,y2,…yn} denote feature vectors (X ∈ Rm and Y ∈ Rn) 

representing information obtained via the two different 

sources. Vectors X and Y are merged to generate a new feature 

vector Z for better representation and potentially better 

estimation of the observed phenomenon [10]. In this study, the 

feature vectors to be merged into a joint feature vector are 

input vectors of ANNIEM and ANNTVDI. Authors in [11] used 

somewhat of a similar approach where (NDVI, thermal 

infrared temperature, θi, 𝜎�o) was the input vector of a non-

linear ANN used to infer SMC to support a hydrological 

simulation studies. However, in this study, the joint feature 

vector is composed of (s, l, θi, 𝜎�o, TVDI) instead, the latter 

represents the input vector to ANNFLF. Initially, the training 

phase links the previously mentioned input vector to the 

measured SMC values. The training set (s, l, θi, 𝜎�o, TVDI, 

SMC) is the input of the neural network where the first 5 

parameters of each set are used to calculate the last one SMC. 

The used ANNFLF has one hidden layer (composed of 10 

nodes) and the training method is Levenberg-Marqurdt. Out of 

the 110 data samples available, 80% were used for training, 

10% for validation and 10% for testing. The size of the hidden 

layer and the training samples division were determined after 

numerous experimentations and this particular configuration 

seems to yield the best results in terms of accuracy.  

 



 

2.5 Decision level fusion 
 

The novelty of this methodology lies in the addition of 

feature level fusion estimation instead of just using the 

sensors in question. The decision level fusion scheme is 

depicted in the figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fusion center in the proposed methodology consists of a 

novel weights based estimation. Weights w1, w2 and w3 are 

assigned to output vectors (estimations) of ANNTVDI, 

ANNIEM, and ANNFLF respectively. The final fused 

estimation is achieved by weighing each estimation as 

depicted in equation 1: 

 

𝑆𝑀𝐶𝑓𝑢𝑠𝑒𝑑 = 𝑤1𝑆𝑀𝐶𝑇𝑉𝐷𝐼 + 𝑤2𝑆𝑀𝐶𝐼𝐸𝑀 +�𝑤3𝑆𝑀𝐶𝐹𝐿𝐹 � 

 

where SMCfused is the final fused estimation, SMCTVDI is the 

estimation derived from ANNTVDI, SMCIEM is the estimation 

derived from ANNIEM, SMCFLF is the estimation derived 

from ANNFLF and w1+w2+w3=1. The metric of accuracy in 

this study is the Root Mean Square Error (RMSE) which is 

represented in equation 2: 

𝑅𝑀𝑆𝐸 = √∑
1

𝑁
(𝑃𝑖 − 𝑂𝑖)

2

𝑁

𝑖=1

 

 

where N is the number of data samples, Pi are the estimated 

SMC values and Oi are the measured SMC values. The most 

straight forward weights assignment is when all weights are 

equal (w1=w2=w3=1/3) which represents the mean. 

However, this assignment is not remotely accurate as the 

concerned estimations have varying degrees of accuracy 

under different conditions as described in section 2. The 

proposed method consists of determining RMSE for each 

possible combination of the weights and selecting the 

combination with the minimum RMSE. The method is 

implemented through a Matlab function that accepts 

SMCTVDI, SMCIEM, SMCFLF vectors as input and returns the 

fused estimation (in SMCfused), the weights values and the 

RMSE as output. The weights values are then saved for 

future applications into a database of weights for later use in 

case of lack of ground truth measurements.  

 

3. STUDY AREA 

 

The study area is an agricultural field in Blackwell farms ( 

1.4 km2 in size) located in Guildford, the county town of 

Surrey in South East England with coordinates (lat:51.2372, 

lon:-0.6260). The size of this field is (295 m x 308 m) with 

minimal vegetation cover (NDVI ≥0.21). Earth observation 

datasets of this study are generated from the Sentinel-1 and 

Landsat-8 satellites. In this study, a Ground Range Detected 

(GRD) product acquired with the Interferometric Wide 

Swath (IWS) and VV polarization is used. First steps are the 

radiometric calibration and Multi-looking of Sentinel-1 

images. Afterwards, these images are resampled to 30 m to 

match the Landsat-8 multispectral (30 m) and thermal 

images (100 m resampled to 30 m). Digital Numbers (DN) 

of the multispectral and thermal images are then transformed 

to reflectance and brightness temperature values 

respectively. The collected in-situ measurements for this 

study are SMC levels and surface heights with the latter 

being crucial to formulate soil surface roughness profile. 

SMC levels are measured using an ML3 Theta Probe Soil 

Moisture Sensor at the depth of 5 cm of soil surface. Then, 

to generate an SMC map, each pixel of the earth observation 

images requires 4 SMC measurements at the corners of that 

pixel. Finally, for a better representation of the spatial 

variability of SMC levels, the mean of those measurements 

is used instead of a single point based measurement. In the 

end, 110 SMC measurements are collected with a mean of 

31.320% and standard deviation of 2.146%. Two soil 

surface roughness measurements (s, l) are collected using a 

mechanical profilometer.  

 

Final SMC 

estimation 

Resampled 

thermal 
Resampled MS 

Thermal 

infrared 

image  

MS 

image 

DN to    

brightness 

temperatures 

DN                  

to reflectance 

DN to     

backscattering 

coefficient 

 

Multilooking 

Image resampling 

and co-registration 

NDVI 

calculation 

LST/NDVI      

scatterplot       

formulation 

TVDI               

determination 

(1) 

Fusion center 

(2) 

SAR 

image  

ANNIEM ANNFLF 

s  l   θi 

Resampled 𝜎o 

ANNTVDI 

Figure 1: Flowchart of the proposed methodology. 



4. EXPERIMENTAL RESULTS 

 

Table 1 showcases the different methods of estimation as 

well as their corresponding accuracy: 

Estimation Method RMSE 

SMCTVDI 1.892 

SMCIEM 1.565 

SMCFLF 1.091 

SMC estimation when w1=w2=0.5 1.615 

SMC estimation when w1=w2=w3=1/3 1.343 

SMCfused (using only w1 and w2) 1.553 

SMCfused 1.090 

Table 1: comparison of the results of the estimation 

methods used in this study. 

SMCTVDI estimation displays the highest RMSE (1.892%) 

which could be explained by the low spatial resolution of 

Landsat-8 thermal infrared band (100 m), not to mention 

that this particular dataset has not undergone any 

atmospheric correction. The multispectral sensor of Landsat-

8 has its own problems when it comes to its spatial 

resolution as well: while it is better than the thermal sensor 

(30 m), the mix of spectral information in a resolution cell of 

this size can affect the final estimation due the spatial 

variability of SMC. SMCIEM estimation fares better than its 

SMCTVDI counterpart (1.565%), this is justified by the low 

intensity of vegetation cover in the agricultural field. 

SMCFLF estimation shows an improvement in terms of 

accuracy than both the SMCTVDI and SMCIEM estimations 

(1.091%), as discussed in [5]. SMC estimations when using 

the mean of SMCTVDI and SMCIEM (1.615%) and the mean of 

SMCTVDI, SMCIEM and SMCFLF (1.343%) while the latter 

performs better than the individual estimations of SMCTVDI 

and SMCIEM, both are worse than SMCFLF. SMCfused (using 

only w1 and w2) estimation (1.553%) proves that the 

addition of SMCFLF estimation to the fusion method 

improves the accuracy of the final fusion as SMCfused 

produces the best SMC estimation (1.090 %). The fusion 

center consistently improves the accuracy of the final 

estimation in this dataset and the one in [5], the 

improvement varied and for this particular dataset it was 

minuscule. 

 5. CONCLUSION 

This study proposed a novel weight based decision level 

fusion method of Landsat-8 and Sentinel-1 for SMC 

estimations. Tests and analysis have shown that this weight 

based estimation produces the best result out of all the tested 

methods (lowest RMSE=1.090%). The improvement is not 

sizeable (0.001% lower than SMCFLF), further investigations 

to validate this improvement are necessary to build a 

weights database capable of reliably estimating SMC values 

without reliance on ground truth data.  
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