
BRIDGING THE GAP: SIMULTANEOUS FINE TUNING FOR DATA RE-BALANCING

John McKay1,2, Isaac Gerg2, & Vishal Monga1

Dept of Electrical Engineering & Computer Science1, Applied Research Laboratory2

Pennsylvania State University

ABSTRACT

There are many real-world classification problems wherein
the issue of data imbalance (the case when a data set con-
tains substantially more samples for one/many classes than
the rest) is unavoidable. While under-sampling the problem-
atic classes is a common solution, this is not a compelling op-
tion when the large data class is itself diverse and/or the lim-
ited data class is especially small. We suggest a strategy based
on recent work concerning limited data problems which uti-
lizes a supplemental set of images with similar properties to
the limited data class to aid in the training of a neural network.
We show results for our model against other typical methods
on a real-world synthetic aperture sonar data set. Code can be
found at github.com/JohnMcKay/dataImbalance.

Index Terms— Data Imbalance, Sonar Automatic Target
Recognition, Neural Networks, Simultaneous Training

1. INTRODUCTION

The goal of any “re-balancing” scheme is to convince an al-
gorithm to not disregard an underrepresented class. This is
nontrivial as learned algorithms are incentivized to perform
well on their training and if they see an overwhelming num-
ber of a certain class, they are going to be more apt to classify
inputs in that direction. When it comes to sonar target recog-
nition, it is obvious that such a tendency will be dangerous.

How do people typically handle data imbalances? For nat-
ural, optical images problems it is common to under-sample
the large class [1]. This means purposefully removing train-
ing samples when training, say, a neural network. This and
variants that compensate using synthesized data may work
well in certain cases [2], but when it comes to sonar (or radar),
omitting background elements that could contain unique de-
bris or distinctive rocky patches is heading towards a direction
of less information making it to the model. This can lead to
confusion later on when tested on field data.

In [3], the authors present a novel manner of training con-
volutional neural networks (CNNs) when dealing with small
data sets. They suggest drawing images from a supplemental,
larger (source) data set that shares low-level features with the

Funding provided by ONR N00014-15-1-2042
Acknowledgements to Tiantong Guo1, Tiep Vu Huu1 for code advice

target data and, when training a CNN, propose simultaneously
learning shared initial layers with the target and source data
sets. This helps alleviate over-fitting and allows the deeper,
finer layers to extract more information. We see that such
a strategy can be adapted for the data imbalance problem in
that a supplemental collection of images from a source data
set can be used to draw images that are similar with respect to
low level features to the data limited class and are dissimilar
to the larger class. This discriminative parsing of the sup-
plemental data set corrects for the data imbalance while not
sacrificing information pertaining to the larger class.

In the following, we look to: formulate and detail our
novel discriminative adaptation of [3] for data imbalances and
demonstrate its potential with an undersea identification prob-
lem using real synthetic aperture sonar (SAS) images. Section
2 goes through how images from a supplemental data set are
chosen. Section 3 goes through our CNN architecture and
how the simultaneous training works. Lastly, Section 4 con-
tains experimental work using the aforementioned actual SAS
data. Note, we use target data set (Dt) to refer to the entire
collection of images we want to classify, source data set (Ds)
to refer the set of images we are drawing from to supplement
our target data set, starved class (cs) to refer to the limited
data class of Dt, and large class (c`) to refer to the larger data
class of Dt.

2. SUPPLEMENTAL DATA SELECTION

Our scheme for “re-balancing” data depends highly on pick-
ing the “right” images from Ds. That is, we need to select
images from Ds that are similar to cs and dissimilar to c` all
according to some metric that detects meaningful characteris-
tics. Let’s start with the metric aspect; we know that trained
convolutional neural networks have initial layers that resem-
ble Gabor filters [4]. These edge filters are then followed in
networks by layers that extract finer and finer details [5]. For
our purposes, the later layers are not of much interest; we do
not expect images in, say, Imagenet [6] to share high level
characteristics with lobster crates under the sea. That said,
we can expect that some images to share similar low-level
edge characteristics. This is the crux of the idea behind using
histograms of Gabor filter activations as the feature vectors
for deciding “nearness.” For every image in Dt and Ds we

ar
X

iv
:1

80
1.

02
54

8v
1

 [
cs

.C
V

]
 8

 J
an

 2
01

8

Limited Class Large Class Source Data

Fig. 1. Example feature space of both
classes of Ds and members of Ds.

N Nearest Neighbors (Limited Class)

Fig. 2. Feature distances calculated and
N closest to cs selected (red).

M Farthest Neighbors (Large Class; Given N)

Fig. 3. Given N from Fig. 2, M far-
thest from c` kept (green).

use Gabor filters to get edge maps and then get histograms
of their intensity values. These activation histograms are then
concatenated according to their image and this vector serves
as our feature transformation.

This is analogous in some ways to what [3] did with lim-
ited data. They used the filters of an existing, trained network
(Alexnet [7]) in conjunction with Gabor filters. These addi-
tional filters were only marginally helpful for our purposes
and not worth the larger vector and increased computational
stress. When dealing with more intricate images than our SAS
example (i.e. ones that have color, have higher resolution, etc)
such an action may be warranted.

With these feature vectors, the next step is to decipher
which are close to cs and far from c` to which we employ a
nearest/farthest neighbor approach. We go through the edge
features according to every source image and find their dis-
tance to the members of Dt. We then parse this data in two
steps: first pluck out the N closest source images to a mem-
ber of cs and then refine that list to the M < N farthest from
the members of c`. The idea is that we first want to ensure
that our pool of potential supplemental images are, foremost,
similar to the limited class and then we can make selections
based on the distances away from the large class. This two
stage approach does not require any additional calculations
beyond a single nearest neighbor implementation, but this is
still a nontrivial computational expense. We suggest using a
random sample D̂s ⊂ Ds to keep computations manageable.

Overall, the idea is this: for each y ∈ Dt, obtain their his-
togram features according to filter f (i), h(i)

y and concatenate
each one over i = 1, . . . , F histograms into a single vector
hy = [h

(1)
y , . . . , h

(2)
y]T . Do the same for the images in the

source data set, x ∈ Dx, to obtain hx and then calculate the
distance between each of the source and target histograms,
arriving in a scenario shown in Figure 1 (We suggest the L2
norm). The final selection is then done in two parts: isolate
the N source images that have the smallest distance between
them and a member of cs and then, of that set, sort them by
their nearest distances to a member of c` and keep the M far-
thest. Both parts of the final step are described in Figures 2

and 3. We let U ⊂ D̂s be the set of images from D̂s that have
been chosen to supplement class cs.

Note that, in some ways, we are designing a scheme simi-
lar to the well-known SMOTE method used for support vector
machine and similar classifiers [8, 9]. Instead of crafting syn-
thetic samples, our use of existing data circumvents a gener-
ation step. This means we in principal are pursuing the same
idea as SMOTE (obtaining representative features for learn-
ing) with a clever work around tailored for neural networks.

3. SIMULTANEOUSLY TRAINED NETWORK

The reason we get U is so that we can use it for training. Be-
fore we go forward, it is worth mentioning the common prac-
tice of weight sharing and transfer learning. When dealing
with limited data or initialization problems, there is an idea of
using existing weights from heavily trained models like VG-
Gnet [10], Alexnet, etc. where authors had ample resources
to train their networks on millions of images. Since the dif-
ferences between natural images are relatively small, models
can be finely tuned by starting with those existing weights and
then trained from there with the target data set [5].

Simultaneously trained models (STMs) are similar in con-
cept but differ in implementation. STMs start from random-
ized weights and flip between batches of U and Ds. This
means, instead of crafting a model using the source data set
and then imposing new information via fine tuning with Dt,
STMs start anew and have Dt and U struggle against one an-
other during the entirety of training. As the only shared qual-
ity between Dt and U are the edge features, this keeps STMs
from getting overly influenced by c` regardless of how long
they are trained. This is crucial for our re-balancing scheme.

4. SONAR TARGET RECOGNITION

Sonar automatic target recognition (ATR) suffers from ex-
treme data imbalances [11] and we designed an experiment to
illustrate the potential of our method as a viable option in this
domain. We looked to classify objects (lobster crates) from

Simultaneously Trained CNN for Data Re-Balancing

1

2

3

Inp
ut

Shared Layers

103
×
3&

ReL
U

103
×
3&

ReL
U

103
×
3&

ReL
U

103
×
3&

ReL
U

103
×
3&

ReL
U

103
×
3&

ReL
U

Ma
xP

ool

103
×
3&

ReL
U

103
×
3&

ReL
U

103
×
3&

ReL
U

Ma
xP

ool

Target Layers

Source Layers

105
×
5F

ilte
rs&

ReL
U

Ma
xP

ool

Fla
tte

n

De
nse

Lay
er

Sof
tMa

xO
utp

ut

105
×
5F

ilte
rs&

ReL
U

Ma
xP

ool

Fla
tte

n

De
nse

Lay
er

Sof
tMa

xO
utp

ut

Fig. 4. A diagram of our simultaneous finely tuned CNN for imbalanced data. Training goes as
follows: “1.5” models are made (one set of shared layers that feed into designated target layers
and designated source layers) and a batch from Dt is fed through (1) with weight updated fol-
lowed by a (smaller) batch from Ds through (2) and, again, weights updated. After sufficiently
many epochs, the source layers are dropped and (3) is used for testing. The given architecture
is what we used for section 4.

Fig. 5. Lobster crates
(top four) and clutter
(bottom four) images.

undersea clutter using real-world data. Our images came from
a synthetic aperture sonar system equipped to an unmanned
underwater vehicle that scoured along New England’s coast.
The entire data set consisted of approximately 1.71km2 of
underwater area coverage. 1.12km2 was designated as train-
ing and supplied 169,413 168×168 patches with 869 of those
containing crates (which we upsampled by a factor of ten for
data augmentation) and the rest clutter (a 194:1 background-
to-crate ratio). 0.58km2 was used as the testing set and gave
89,048 patches consisting of 757 with crates and the other
88,291 as clutters (a 117:1 background-to-crate ratio).

Evaluating the effectiveness of a classifier on imbalanced
data is nuanced. Typically, one sees a ROC curve when deal-
ing with a binary problem but they are ill-equipped for skewed
data scenarios; ROC curves under emphasize the effect of
large numbers of false positives [12]. Instead, we looked at
two more informative metrics: precision-recall (PR) and false
alarm rate (FAR) curves. PR curves are less biased than ROC
curves as they do not consider true negatives which over-
whelm ROC curve statistics [12]. FAR curves replace a ROC
curve’s false positive rate with the expected number of false
alarms per square 0-1km (i.e. a hard cut-off at 1km2) and are
standard for ATR problems [13].

We looked to use the Caltech 256 data set [14] as a Ds

and built a STM with N=18,000 and M=12,000. For con-
text, we also built: a CNN with no source data influence and
trained with a subsampling of the larger class, a CNN with
class weights trained on an imbalanced data set, a CNN that
was fine tuned using Ds and then trained on the imbalanced
set, a CNN that was fine tuned with Ds and then trained using
a subsampled data set, and, lastly, a simple nearest neighbor

(i.e. non-CNN) scheme that used a distance-based scoring
metric so we could illustrate its PR/FAR performance. Each
competing scheme offers a different view of against our STM
model. Note for the CNNs, we used evaluated the AUC of a
PR curve on a small validation set at each epoch and chose
the weights based on the optimal epoch. The fine tuned mod-
els were pre-trained on Ds for 30 epochs based on over-fitting
and general performance.

In our experiments, the STM outperformed the five others
in testing and, as Figures 7 and 8 show, there was a consider-
able gap. Our results revealed a trend: models that could use
the full, imbalanced training did better than subsampled ones.
Even the nearest neighbor scheme with the full training set
did better in terms of FAR than the two subsampled cases, re-
flecting the benefit of more information. The STM’s relative
success unveils the power in our discriminative, simultaneous
training scheme; if Ds were to be used for fine tuning without
any refinement, it is arguably as powerful as just weights.

We lastly note an interesting phenomenon with regards to
the training loss. As shown in Figure 6, the Ds-using models
asymptoted to zero yet the fine tuned with subsampling failed
to achieve the quality of the others, suggesting a different lo-
cal minima convergence. In later work, it would be prudent to
investigate the loss function manifold to understand how our
and other training schemes impact its geometry.

5. CONCLUSION

We have shown that STMs using a discriminatively chosen
source set U can help alleviate the problematic trade-off
between incorporating more large-class information into a

10 20 30 40 50 60 70 80
.1
.2
.3
.4

1
2
3
4
5
Training Loss Curves

Ob
jec

tive
Los

s

Training Epoch

Ds Loss

Dt Loss

Model
STMSubsampleWeighted CNN

Fine TunedFT & SS

Fig. 6. Per-epoch training function
loss. Top is Ds or U loss, bottom is Dt.
Training parameters found in code.

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
.1
.2
.3
.4
.5
.6
.7
.8
.9
1
PR Curves for SAS ATR

Pre
cis

ion
Recall

Model (AUC)
STM (.74)Subsample (.61)Weighted CNN (.65)Fine Tuned (.62)FT & SS (.49)Nearest Neighbor (.56)

Fig. 7. Precision-Recall for five CNN
models and nearest neighbor. AUC is
the mean precision over all tests.

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
.1
.2
.3
.4
.5
.6
.7
.8
.9
1
FAR Curve for SAS ATR

Tru
eP

osi
tive

Rat
e

False Alarm Rate (km2)

Model (AUC)
STM (.69)Subsample (.41)Weighted CNN (.48)Fine Tuned (.58)FT & SS (.45)Nearest Neighbor (.49)

Fig. 8. False alarm rate per km2 for
five CNN models and nearest neighbor.
AUC is the discrimination over 1 km2.

model and the bias that causes. A further investigation into
the choice of Ds or edge-feature statistics may be a fruitful di-
rection for future research, but for now we consider our work
a compelling option for those struggling with imbalanced
training sets, especially in the case of sonar ATR.

6. REFERENCES

[1] H. He and E. A. Garcia, “Learning from imbalanced
data,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 21, no. 9, pp. 1263–1284, Sept 2009.

[2] S. Barua, M. M. Islam, X. Yao, and K. Murase,
“Mwmote–majority weighted minority oversampling
technique for imbalanced data set learning,” IEEE
Transactions on Knowledge and Data Engineering, vol.
26, no. 2, pp. 405–425, Feb 2014.

[3] Weifeng Ge and Yizhou Yu, “Borrowing treasures from
the wealthy: Deep transfer learning through selective
joint fine-tuning,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[4] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas
Fuchs, and Hod Lipson, “Understanding neural net-
works through deep visualization,” arXiv preprint
arXiv:1506.06579, 2015.

[5] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef
Sivic, “Learning and transferring mid-level image rep-
resentations using convolutional neural networks,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2014, pp. 1717–1724.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “ImageNet: A Large-Scale Hierarchical Image
Database,” in CVPR09, 2009.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097–1105.

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer, “Smote: synthetic minority
over-sampling technique,” Journal of artificial intelli-
gence research, vol. 16, pp. 321–357, 2002.

[9] Rehan Akbani, Stephen Kwek, and Nathalie Japkow-
icz, “Applying support vector machines to imbalanced
datasets,” Machine learning: ECML 2004, pp. 39–50,
2004.

[10] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[11] Jason Stack, “Automation for underwater mine recog-
nition: current trends and future strategy,” in SPIE De-
fense, Security, and Sensing. International Society for
Optics and Photonics, 2011, pp. 80170K–80170K.

[12] Jesse Davis and Mark Goadrich, “The relationship be-
tween precision-recall and roc curves,” in Proceedings
of the 23rd international conference on Machine learn-
ing. ACM, 2006, pp. 233–240.

[13] Timothy D Ross, Steven W Worrell, Vincent J Velten,
John C Mossing, and Michael Lee Bryant, “Standard
sar atr evaluation experiments using the mstar public re-
lease data set,” in Algorithms for Synthetic Aperture
Radar Imagery V. International Society for Optics and
Photonics, 1998, vol. 3370, pp. 566–574.

[14] Gregory Griffin, Alex Holub, and Pietro Perona,
“Caltech-256 object category dataset,” 2007.

	1 Introduction
	2 Supplemental Data Selection
	3 Simultaneously Trained Network
	4 Sonar Target Recognition
	5 Conclusion
	6 References

